Photo AI

A student conducted an experiment in the school laboratory under standard laboratory conditions (25°C, 100 kPa) to determine the volume of carbon dioxide gas produced during the fermentation of glucose - HSC - SSCE Chemistry - Question 25 - 2021 - Paper 1

Question icon

Question 25

A-student-conducted-an-experiment-in-the-school-laboratory-under-standard-laboratory-conditions-(25°C,-100-kPa)-to-determine-the-volume-of-carbon-dioxide-gas-produced-during-the-fermentation-of-glucose-HSC-SSCE Chemistry-Question 25-2021-Paper 1.png

A student conducted an experiment in the school laboratory under standard laboratory conditions (25°C, 100 kPa) to determine the volume of carbon dioxide gas produce... show full transcript

Worked Solution & Example Answer:A student conducted an experiment in the school laboratory under standard laboratory conditions (25°C, 100 kPa) to determine the volume of carbon dioxide gas produced during the fermentation of glucose - HSC - SSCE Chemistry - Question 25 - 2021 - Paper 1

Step 1

Include a relevant chemical equation

96%

114 rated

Answer

The fermentation of glucose can be represented by the following equation:

C6H12O6(aq)2C2H5OH(aq)+2CO2(g)C_6H_{12}O_6(aq) \rightarrow 2C_2H_5OH(aq) + 2CO_2(g)

Step 2

Calculate the total moles of CO₂ produced

99%

104 rated

Answer

Total volume of gas produced on Day 5 = 1006 mL = 1.006 L

Using the ideal gas law, we use the molar volume of gas at standard conditions (24.79 L mol⁻¹).

nCO2=VCO224.79extLmol1=1.006extL24.79extLmol1=0.040508807939molesn_{CO_2} = \frac{V_{CO_2}}{24.79 \, ext{L mol}^{-1}} = \frac{1.006 \, ext{L}}{24.79 \, ext{L mol}^{-1}} = 0.040508807939 \, \text{moles}

Step 3

Find the moles of C₂H₅OH produced

96%

101 rated

Answer

From the balanced equation, the ratio of glucose to ethanol is 1:2. Therefore:

nC2H5OH=2×nCO2=2×0.040508807939=0.08101761588molesn_{C_2H_5OH} = 2 \times n_{CO_2} = 2 \times 0.040508807939 = 0.08101761588 \, \text{moles}

Step 4

Calculate the mass of C₂H₅OH produced

98%

120 rated

Answer

To find the mass of ethanol, we use its molar mass:

Molar mass of C₂H₅OH = 46.068 g mol⁻¹

Mass of ethanol:

mC2H5OH=nC2H5OH×Molar mass=0.08101761588mol×46.068g mol1=3.726390gm_{C_2H_5OH} = n_{C_2H_5OH} \times \text{Molar mass} = 0.08101761588 \, \text{mol} \times 46.068 \, \text{g mol}^{-1} = 3.726390\, g

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;