Photo AI

A manufacturer requires that its product contains at least 85% v/v ethanol - HSC - SSCE Chemistry - Question 35 - 2021 - Paper 1

Question icon

Question 35

A-manufacturer-requires-that-its-product-contains-at-least-85%-v/v-ethanol-HSC-SSCE Chemistry-Question 35-2021-Paper 1.png

A manufacturer requires that its product contains at least 85% v/v ethanol. The concentration of ethanol in water can be determined by a back titration. Ethanol is ... show full transcript

Worked Solution & Example Answer:A manufacturer requires that its product contains at least 85% v/v ethanol - HSC - SSCE Chemistry - Question 35 - 2021 - Paper 1

Step 1

Calculate the average volume of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> added

96%

114 rated

Answer

To find the average volume of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> added, exclude any outlier. In this case, we exclude the first titration volume (29.9 mL) as an outlier. Thus, the average is calculated from the remaining values:

Average=28.7+28.4+28.63=28.5667 mL\text{Average} = \frac{28.7 + 28.4 + 28.6}{3} = 28.5667 \text{ mL}

Step 2

Calculate moles of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>

99%

104 rated

Answer

Using the average volume obtained, calculate the moles of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>:

n(S2O32)=c×V=0.900 mol L1×0.0285667 L=0.02571 moln(S_2O_3^{2-}) = c \times V = 0.900 \text{ mol L}^{-1} \times 0.0285667 \text{ L} = 0.02571 \text{ mol}

Step 3

Use stoichiometry to find moles of iodine (I<sub>2</sub>)

96%

101 rated

Answer

From the equation:

I2+2S2O322II_2 + 2S_2O_3^{2-} \rightarrow 2I^-

We know that:

n(I2)=12×n(S2O32)=12×0.02571=0.012855 moln(I_2) = \frac{1}{2} \times n(S_2O_3^{2-}) = \frac{1}{2} \times 0.02571 = 0.012855 \text{ mol}

Step 4

Find moles of excess Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup>

98%

120 rated

Answer

Using the stoichiometry from the reaction:

Cr2O72+14H++6I2Cr3++3I2+7H2OCr_2O_7^{2-} + 14H^+ + 6I^- \rightarrow 2Cr^{3+} + 3I_2 + 7H_2O

We determine:

n(I2)=3×n(Cr2O72)n(I_2) = 3 \times n(Cr_2O_7^{2-})

Thus:

n(excessCr2O72)=13×n(I2)=13×0.012855=0.004285 moln(excess Cr_2O_7^{2-}) = \frac{1}{3} \times n(I_2) = \frac{1}{3} \times 0.012855 = 0.004285 \text{ mol}

Step 5

Calculate the moles of initial Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup>

97%

117 rated

Answer

Using the initial concentration of Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup>:

n(initialCr2O72)=c×V=0.500 mol L1×0.0200 L=0.0100 moln(initial Cr_2O_7^{2-}) = c \times V = 0.500 \text{ mol L}^{-1} \times 0.0200 \text{ L} = 0.0100 \text{ mol}

Step 6

Determine moles of Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> reacted with ethanol

97%

121 rated

Answer

Now calculate the moles of Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> that reacted with ethanol:

n(Cr2O72)=n(initialCr2O72)n(excessCr2O72)n(Cr_2O_7^{2-}) = n(initial Cr_2O_7^{2-}) - n(excess Cr_2O_7^{2-})

So:

n(Cr2O72)=0.01000.004285=0.005715 moln(Cr_2O_7^{2-}) = 0.0100 - 0.004285 = 0.005715 \text{ mol}

Step 7

Find the moles of ethanol (C<sub>2</sub>H<sub>5</sub>OH) reacted

96%

114 rated

Answer

Using the stoichiometry of the reaction:

3C2H5OH+Cr2O72products3C_2H_5OH + Cr_2O_7^{2-} \rightarrow products

We have:

13×n(Cr2O72)=n(C2H5OH)\frac{1}{3} \times n(Cr_2O_7^{2-}) = n(C_2H_5OH)

Thus:

n(C2H5OH)=13×0.005715=0.001905 moln(C_2H_5OH) = \frac{1}{3} \times 0.005715 = 0.001905 \text{ mol}

Step 8

Calculate the mass of ethanol

99%

104 rated

Answer

Using the molar mass of ethanol (46.068 g mol<sup>-1</sup>):

m(C2H5OH)=n×MM=0.001905 mol×46.068 g mol1=0.08757 gm(C_2H_5OH) = n \times MM = 0.001905 \text{ mol} \times 46.068 \text{ g mol}^{-1} = 0.08757 \text{ g}

Step 9

Determine the final concentration in percent volume/volume

96%

101 rated

Answer

Now, using the volume of the diluted sample:

V(C2H5OH)=mdensity=0.08757 g0.789 g mL1=0.111extmLV(C_2H_5OH) = \frac{m}{\text{density}} = \frac{0.08757 \text{ g}}{0.789 \text{ g mL}^{-1}} = 0.111 ext{ mL}

Finally, calculate the percent:

% v/v=(20.02 mL25.0 mL)×100=80 v/v\% \text{ v/v} = \left(\frac{20.02 \text{ mL}}{25.0 \text{ mL}}\right) \times 100 = 80 \text{ v/v}

Step 10

Conclude whether the sample meets the manufacturer's requirements

98%

120 rated

Answer

Since the concentration found is under 85%, the product does not meet the manufacturer's requirement.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;