Photo AI

Sodium hypochlorite (NaOCl) is the active ingredient in pool chlorine - HSC - SSCE Chemistry - Question 34 - 2022 - Paper 1

Question icon

Question 34

Sodium-hypochlorite-(NaOCl)-is-the-active-ingredient-in-pool-chlorine-HSC-SSCE Chemistry-Question 34-2022-Paper 1.png

Sodium hypochlorite (NaOCl) is the active ingredient in pool chlorine. It completely dissolves in water to produce the hypochlorite ion (OCl\text{-}), which undergoe... show full transcript

Worked Solution & Example Answer:Sodium hypochlorite (NaOCl) is the active ingredient in pool chlorine - HSC - SSCE Chemistry - Question 34 - 2022 - Paper 1

Step 1

Calculate pOH and [OH\text{-}]

96%

114 rated

Answer

To find the pOH:

pOH=14pH=147.5=6.5\text{pOH} = 14 - \text{pH} = 14 - 7.5 = 6.5

Then, we can calculate the hydroxide ion concentration:

[OH]=10pOH=106.53.16×107 mol L1[\text{OH}^-] = 10^{-\text{pOH}} = 10^{-6.5} \approx 3.16 \times 10^{-7} \text{ mol L}^{-1}

Step 2

Set up the equilibrium expression

99%

104 rated

Answer

The equilibrium expression based on the provided reaction is given by:

Keq=[OH][HClO][OCl]K_{eq} = \frac{[\text{OH}^-][\text{HClO}]}{[\text{OCl}^-]}

Substituting the known concentrations, with [HClO] = 1.3 \times 10^{-4} mol L^{-1} and Keq=3.33×107K_{eq} = 3.33 \times 10^{-7}:

3.33×107=(3.16×107)(1.3×104)[OCl]3.33 \times 10^{-7} = \frac{(3.16 \times 10^{-7})(1.3 \times 10^{-4})}{[\text{OCl}^-]}

Step 3

Calculate [OCl\text{-}]

96%

101 rated

Answer

Rearranging the equation gives:

[OCl]=(3.16×107)(1.3×104)3.33×107[\text{OCl}^-] = \frac{(3.16 \times 10^{-7})(1.3 \times 10^{-4})}{3.33 \times 10^{-7}}

After calculation:

[OCl]1.23×104 mol L1[\text{OCl}^-] \approx 1.23 \times 10^{-4} \text{ mol L}^{-1}

Step 4

Determine the amount needed for the pool

98%

120 rated

Answer

Using the formula:

c1V1=c2V2c_1 V_1 = c_2 V_2

Where:

  • c1c_1 = concentration of sodium hypochlorite = 2.0 mol L^{-1}
  • c2c_2 = concentration of OCl^- needed = 1.23 \times 10^{-4} mol L^{-1}
  • V2V_2 = volume of the pool = 1.00 \times 10^{4} L

Rearranging gives us:

V1=c2V2c1=(1.23×104 mol L1)(1.00×104 L)2.0 mol L1V_1 = \frac{c_2 V_2}{c_1} = \frac{(1.23 \times 10^{-4} \text{ mol L}^{-1})(1.00 \times 10^{4} \text{ L})}{2.0 \text{ mol L}^{-1}}

Performing the calculation:

V16.15 LV_1 \approx 6.15 \text{ L}

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;