To find the integral, we can use integration by parts. Let:
- u=x+1
- dv=e2xdx.
Then, we differentiate and integrate:
- du=dx
- v=21e2x.
Now applying the integration by parts formula:
∫udv=uv−∫vdu,
we have:
∫(x+1)e2xdx=(x+1)⋅21e2x−∫21e2xdx.
The integral ∫e2xdx=21e2x, so:
∫(x+1)e2xdx=(x+1)⋅21e2x−41e2x+C.
Thus, the final answer is:
41e2x(2(x+1)−1)+C=41e2x(2x+1)+C.