To find the function x(t), we start from the given differential equation:
dtdx=−1.5sin(45πt).
Integrating both sides:
x(t)=∫−1.5sin(45πt)dt.
Using the integral of sin(kx)dx, we have:
x(t)=−1.5⋅(−5π4)cos(45πt)+k(wherekistheconstantofintegration)
Thus:
x(t)=5π6cos(45πt)+k.
When t=0, we have x(0)=11.2 m:
11.2=5π6cos(0)+k⇒k=11.2−5π6.
Therefore, we have:
x(t)=5π6cos(45πt)+(11.2−5π6).