Photo AI

What are the domain and range of the function $y = 2 ext{cos}^{-1}(2x) + 2 ext{sin}^{-1}(2x)$? - HSC - SSCE Mathematics Extension 1 - Question 4 - 2024 - Paper 1

Question icon

Question 4

What-are-the-domain-and-range-of-the-function-$y-=-2--ext{cos}^{-1}(2x)-+-2-ext{sin}^{-1}(2x)$?-HSC-SSCE Mathematics Extension 1-Question 4-2024-Paper 1.png

What are the domain and range of the function $y = 2 ext{cos}^{-1}(2x) + 2 ext{sin}^{-1}(2x)$?

Worked Solution & Example Answer:What are the domain and range of the function $y = 2 ext{cos}^{-1}(2x) + 2 ext{sin}^{-1}(2x)$? - HSC - SSCE Mathematics Extension 1 - Question 4 - 2024 - Paper 1

Step 1

Determine the Domain

96%

114 rated

Answer

To find the domain of the function, we need to consider the constraints imposed by the inverse cosine and sine functions. The function y=2extcos1(2x)+2extsin1(2x)y = 2 ext{cos}^{-1}(2x) + 2 ext{sin}^{-1}(2x) requires that the argument of both inverse functions lie within the interval [−1, 1].

Thus, we set up the following inequalities:

  1. For extcos1(2x) ext{cos}^{-1}(2x):

    12x1-1 \leq 2x \leq 1

    Dividing the entire inequality by 2 gives:
    0.5x0.5-0.5 \leq x \leq 0.5

  2. For extsin1(2x) ext{sin}^{-1}(2x):

    12x1-1 \leq 2x \leq 1

    This yields the same bounds for x.

Therefore, the domain of the function is:
[0.5,0.5][-0.5, 0.5]

Step 2

Determine the Range

99%

104 rated

Answer

Next, we will determine the range of the function. The expressions for the inverse cosine and sine yield outputs that we can analyze:

  1. The output of extcos1(u) ext{cos}^{-1}(u) where uextin[1,1]u ext{ in } [-1, 1] is in the interval [0,extπ][0, ext{π}].

  2. The output of extsin1(u) ext{sin}^{-1}(u) is in the interval [- rac{ ext{π}}{2}, rac{ ext{π}}{2}].

Since the function combines these outputs:

  • The contribution from 2extcos1(2x)2 ext{cos}^{-1}(2x) gives a range of [0,2extπ][0, 2 ext{π}].
  • The contribution from 2extsin1(2x)2 ext{sin}^{-1}(2x) gives a range of [extπ,extπ][- ext{π}, ext{π}].

To find the combined range, we add the intervals for each function and analyze the possible values:

The minimum value occurs at x=0.5x = -0.5 yielding:
y_{ ext{min}} = 2( ext{π}) - 2 rac{ ext{π}}{2} = 0

The maximum occurs at x=0.5x = 0.5 yielding:
yextmax=0+2(extπ)=2extπy_{ ext{max}} = 0 + 2( ext{π}) = 2 ext{π}

Thus, the overall range is: [extπ,2extπ][- ext{π}, 2 ext{π}]

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;