Photo AI

(a) The vectors $egin{pmatrix} a^2 \ 2 \ \\ a + 5 \ a - 4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\}egin{pmatrix} a + 5 \ a - 4 \\ \\ \\ \\} are perpendicular - HSC - SSCE Mathematics Extension 1 - Question 12 - 2024 - Paper 1

Question icon

Question 12

(a)-The-vectors-$egin{pmatrix}-a^2-\-2-\-\\--a-+-5-\-a---4-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\--\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\}egin{pmatrix}-a-+-5-\-a---4-\\-\\-\\-\\}-are-perpendicular-HSC-SSCE Mathematics Extension 1-Question 12-2024-Paper 1.png

(a) The vectors $egin{pmatrix} a^2 \ 2 \ \\ a + 5 \ a - 4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\... show full transcript

Worked Solution & Example Answer:(a) The vectors $egin{pmatrix} a^2 \ 2 \ \\ a + 5 \ a - 4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\}egin{pmatrix} a + 5 \ a - 4 \\ \\ \\ \\} are perpendicular - HSC - SSCE Mathematics Extension 1 - Question 12 - 2024 - Paper 1

Step 1

Find the possible values of a.

96%

114 rated

Answer

To determine the possible values of aa, we first establish the condition for perpendicular vectors. For vectors egin{pmatrix} a^2 \ 2 \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ and egin{pmatrix} a + 5 \ a - 4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ to be perpendicular, their dot product should equal zero.

Let's calculate it:

egin{pmatrix} a^2 \ 2 \\ \\ \\ \\ \\$ egin{pmatrix} a + 5 \ a - 4 \\ \end{pmatrix} = 0

Expanding yields:

a2(a+5)+2(a4)=0 a^2(a + 5) + 2(a - 4) = 0

Simplifying gives us:

a3+5a2+2a8=0a^3 + 5a^2 + 2a - 8 = 0

We can now factor this polynomial to find the roots. Testing for rational roots, we find that a=1a = 1 is a solution. This factors our polynomial as:

(a1)(a2+6a+8)=0(a - 1)(a^2 + 6a + 8) = 0

This simplifies to:

a2+6a+8=(a+2)(a+4)a^2 + 6a + 8 = (a + 2)(a + 4)

Thus, the possible values of aa are 2-2, 4-4, and 11.

Step 2

What is the volume of the solid of revolution obtained when the region R is rotated about the x-axis?

99%

104 rated

Answer

To find the volume of the solid of revolution when the region RR is rotated about the x-axis, we use the formula for volume:

V=π12(x3)2dxV = \pi \int_1^2 (x^3)^2 \, dx

Calculating this integral:

V=π12x6dxV = \pi \int_1^2 x^6 \, dx

Evaluating the integral:

=π[x77]12=π(277177)=π(128717)=127π7= \pi \left[ \frac{x^7}{7} \right]_1^2 = \pi \left( \frac{2^7}{7} - \frac{1^7}{7} \right) = \pi \left( \frac{128}{7} - \frac{1}{7} \right) = \frac{127\pi}{7}

Step 3

Use the standard normal distribution to approximate the probability that, on a particular day, at least 35% of the people talked to made a donation.

96%

101 rated

Answer

We denote the number of donations made as XX. Given that there is a 0.31 chance of donations, the expected number of donations out of 100 people is:

E(X)=np=100×0.31=31E(X) = n p = 100 \times 0.31 = 31

The variance is calculated as:

Var(X)=np(1p)=100×0.31×0.69=21.39Var(X) = np(1 - p) = 100 \times 0.31 \times 0.69 = 21.39

The standard deviation σ=24.844.92\, \sigma = \sqrt{24.84} \approx 4.92.

To find the probability that at least 35 people (i.e., 35%) made donations:

We apply the z-score formula:

z=Xμσ=35314.920.81z = \frac{X - \mu}{\sigma} = \frac{35 - 31}{4.92} \approx 0.81

Using standard normal distribution tables, we find:

P(Z0.81)=1P(Z<0.81)10.7910=0.2090P(Z \geq 0.81) = 1 - P(Z < 0.81) \approx 1 - 0.7910 = 0.2090

Thus, approximately 20.90% probability that at least 35% of people made donations.

Step 4

Use mathematical induction to prove that $2^n + 13$ is divisible by 7 for all integers n ≥ 1.

98%

120 rated

Answer

Base case (n=1):

21+13=152^1 + 13 = 15, which is divisible by 7.

Inductive step: Assume true for n=kn = k, that is, 2k+132^k + 13 is divisible by 7.

Now consider n=k+1n = k + 1, we have:

2k+1+13=22k+13=2(2k+13)132^{k+1} + 13 = 2 \cdot 2^k + 13 = 2(2^k + 13) - 13

Since 2k+132^k + 13 is divisible by 7, it follows that 2(2k+13)2(2^k + 13) is also divisible by 7. Therefore, 2k+1+132^{k+1} + 13 is divisible by 7.

By induction, 2n+132^n + 13 is divisible by 7 for all integers n1n \geq 1.

Step 5

For what values of x is \( \frac{x}{6} \geq \frac{1}{|x - 5|} \)?

97%

117 rated

Answer

To solve the inequality, we must consider two cases based on the absolute value.

Case 1: x > 5

In this scenario, the absolute value x5|x - 5| simplifies to (x5)(x - 5), yielding:

x61x5\frac{x}{6} \geq \frac{1}{x - 5}

Cross-multiplying gives:

x(x5)6x(x - 5) \geq 6

This simplifies to:

x25x60x^2 - 5x - 6 \geq 0

Factoring yields:

(x6)(x+1)0(x - 6)(x + 1) \geq 0

Therefore, the solution from this case is:

x[6,)x \in [6, \infty)

Case 2: x < 5

Here, the absolute value eliminates as x5=(5x)|x - 5| = (5 - x), leading to:

x615x\frac{x}{6} \geq \frac{1}{5 - x}

Cross-multiplying results in:

x(5x)6x(5 - x) \geq 6

This implies:

x2+5x60-x^2 + 5x - 6 \geq 0

Factoring gives:

(x2)(x3)0(x - 2)(x - 3) \leq 0

Thus, from this case, we find:

x[2,3]x \in [2, 3]

Final Solution: Therefore, the complete solution set is:

x[2,3][6,)x \in [2, 3] \cup [6, \infty)

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;