Photo AI

Use the Question 11 Writing Booklet - HSC - SSCE Mathematics Extension 1 - Question 11 - 2021 - Paper 1

Question icon

Question 11

Use-the-Question-11-Writing-Booklet-HSC-SSCE Mathematics Extension 1-Question 11-2021-Paper 1.png

Use the Question 11 Writing Booklet. (a) Find $(i + 6j) + (2i - 7j)$. (b) Expand and simplify $(2a - b)^4$. (c) Use the substitution $u = x + 1$ to find $\int \sq... show full transcript

Worked Solution & Example Answer:Use the Question 11 Writing Booklet - HSC - SSCE Mathematics Extension 1 - Question 11 - 2021 - Paper 1

Step 1

Find $(i + 6j) + (2i - 7j)$

96%

114 rated

Answer

To solve this, we combine the coefficients of the like terms:

(i+6j)+(2i7j)=(1+2)i+(67)j=3ij.(i + 6j) + (2i - 7j) = (1 + 2)i + (6 - 7)j = 3i - j.

Thus, the answer is 3ij3i - j.

Step 2

Expand and simplify $(2a - b)^4$

99%

104 rated

Answer

Using the binomial expansion formula, we have:

(a+b)n=k=0n(nk)ankbk.(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k.

For (2ab)4(2a - b)^4, we get:

(2a)44(2a)3b+6(2a)2b24(2a)b3+b4=16a432a3b+24a2b28ab3+b4.(2a)^4 - 4(2a)^3b + 6(2a)^2b^2 - 4(2a)b^3 + b^4 = 16a^4 - 32a^3b + 24a^2b^2 - 8ab^3 + b^4.

Thus, the simplified form is:

16a432a3b+24a2b28ab3+b4.16a^4 - 32a^3b + 24a^2b^2 - 8ab^3 + b^4.

Step 3

Use the substitution $u = x + 1$ to find $\int \sqrt{x + 1} \, dx$

96%

101 rated

Answer

Using the substitution u=x+1u = x + 1, we have:

x+1dx=udu=23u3/2+C=23(x+1)3/2+C.\int \sqrt{x + 1} \, dx = \int \sqrt{u} \, du = \frac{2}{3}u^{3/2} + C = \frac{2}{3}(x + 1)^{3/2} + C.

Step 4

A committee containing 5 men and 3 women is to be formed from a group of 10 men and 8 women.

98%

120 rated

Answer

To determine the number of ways to form this committee, we use combinations:

(105)×(83).\binom{10}{5} \times \binom{8}{3}.

Calculating these: (105)=252and(83)=56.\binom{10}{5} = 252\quad \text{and} \quad \binom{8}{3} = 56.

Therefore, the total number of ways: 252×56=14112.252 \times 56 = 14112.

Step 5

At what rate is the volume of the bubble increasing when its radius reaches 0.6 mm?

97%

117 rated

Answer

The volume VV of a spherical bubble is given by:

V=43πr3V = \frac{4}{3}\pi r^3

Differentiating with respect to time, we have:

dVdt=4πr2drdt.\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}.

Given that drdt=0.2mm/s\frac{dr}{dt} = 0.2 \, \text{mm/s} and when r=0.6mmr = 0.6 \, \text{mm}:

dVdt=4π(0.62)(0.2)=4π(0.36)(0.2)=0.144π. \frac{dV}{dt} = 4\pi(0.6^2)(0.2) = 4\pi(0.36)(0.2) = 0.144\pi.

Rounding: dVdt0.5mm3/s. \frac{dV}{dt} \approx 0.5 \, \text{mm}^3/s.

Step 6

Evaluate $\int_0^{\sqrt{3}} \frac{1}{\sqrt{4 - x^2}} \, dx$

97%

121 rated

Answer

We use the identity:

Here, a=2a = 2. Hence, we have:

0314x2dx=sin1(32)sin1(0)=π30=π3. \int_0^{\sqrt{3}} \frac{1}{\sqrt{4 - x^2}} \, dx = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) - \sin^{-1}(0) = \frac{\pi}{3} - 0 = \frac{\pi}{3}.

Step 7

By factoring, or otherwise, solve $2\sin^3 x + 2\sin^2 x - \sin x - 1 = 0$ for $0 \leq x \leq 2\pi$

96%

114 rated

Answer

First, factor out:

2sin2x(sinx+1)sinx1=0.2\sin^2 x(\sin x + 1) - \sin x - 1 = 0.

This can be arranged as: sinx(2sin2x1)1=0.\sin x(2\sin^2 x - 1) - 1 = 0.

Solutions are: sinx=1 or 2sin2x1=0.\sin x = -1 \text{ or } 2\sin^2 x - 1 = 0.

The solutions for sinx=1\sin x = -1 are: 3π2\frac{3\pi}{2}. For the quadratic, we have: sin2x=12sinx=22,22.\sin^2 x = \frac{1}{2} \Rightarrow \sin x = \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}. This gives solutions: x=π4,3π4,7π4,5π4.x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{7\pi}{4}, \frac{5\pi}{4}.

Step 8

What is the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$?

99%

104 rated

Answer

Using Vieta's formulas for the roots of the polynomial x43x3+6x2+αx+βx^4 - 3x^3 + 6x^2 + \alpha x + \beta, we know:

α+β+γ+δ=3.\alpha + \beta + \gamma + \delta = 3.

Thus, 1α+1β+1γ+1δ=α+β+γ+δαβγδ=36=12.\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} = \frac{\alpha + \beta + \gamma + \delta}{\alpha \beta \gamma \delta} = \frac{3}{-6} = -\frac{1}{2}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;