Photo AI
Question 2
Use the substitution $u = ext{log}_e x$ to evaluate \[ \int_{e}^{e^2} \frac{1}{x \left( \text{log}_e x \right)^2} \, dx. \] (b) A particle moves on the $x$-axis w... show full transcript
Step 1
Answer
Start with the substitution , which implies . Changing the limits: when , ; when , .
Thus, the integral becomes: [ \int_{1}^{2} \frac{1}{u^2} , du. ]
Evaluating this gives: [ -\frac{1}{u} \Big|_{1}^{2} = -\frac{1}{2} + 1 = \frac{1}{2}. ]
Step 2
Answer
From the acceleration equation, we have: [ \bar{x} = \frac{d}{dt} \left( \frac{1}{2} v^2 \right) \Rightarrow \bar{x} = v \frac{dv}{dx}. ]
Setting the two equal yields: [ v \frac{dv}{dx} = 4 \Rightarrow v dv = 4 dx. ]
Integrating both sides: [ \int v , dv = \int 4 , dx \Rightarrow \frac{1}{2} v^2 = 4x + C. ]
Since the particle starts at rest (), we find .
Thus, at : [ \frac{1}{2} v^2 = 4(2) - 4 \Rightarrow \frac{1}{2} v^2 = 4 \Rightarrow v^2 = 8 \Rightarrow v = \sqrt{8} = 2\sqrt{2}. ]
Step 3
Answer
Using Vieta's formulas, the sum of the roots is given by: [ -\frac{16}{a} = -2 + 3 + \alpha \Rightarrow \alpha = -2 + 3 + \frac{16}{a}. ]
The product of the roots is: [ -\frac{-120}{a} = (-2)(3)(\alpha) \Rightarrow 6\alpha = \frac{120}{a} \Rightarrow \alpha = \frac{20}{a}. ]
Setting these two expressions for ( \alpha ) equal gives: [ -2 + 3 + \frac{16}{a} = \frac{20}{a}. ]
Simplifying, we find: [ 1 + \frac{16}{a} = \frac{20}{a} \Rightarrow 4 = \frac{4}{a} \Rightarrow a = 4. ] [ \alpha = \frac{20}{4} = 5. ]
Step 4
Answer
First, find the derivative of : [ f'(x) = \sec^2(x) - \frac{1}{x}. ]
Starting with , compute: [ f(4) = \tan(4) - \log_e(4), ] [ f'(4) = \sec^2(4) - \frac{1}{4}. ]
Use Newton's method to find: [ x_{1} = x_{0} - \frac{f(x_0)}{f'(x_0)}. ]
Continue this process until the value stabilizes, rounding your final answer to two decimal places.
Report Improved Results
Recommend to friends
Students Supported
Questions answered