Photo AI

For the vectors $oldsymbol{u} = oldsymbol{i} - oldsymbol{j}$ and $oldsymbol{v} = 2oldsymbol{i} + oldsymbol{j}$, evaluate each of the following - HSC - SSCE Mathematics Extension 1 - Question 11 - 2022 - Paper 1

Question icon

Question 11

For-the-vectors-$oldsymbol{u}-=-oldsymbol{i}---oldsymbol{j}$-and-$oldsymbol{v}-=-2oldsymbol{i}-+-oldsymbol{j}$,-evaluate-each-of-the-following-HSC-SSCE Mathematics Extension 1-Question 11-2022-Paper 1.png

For the vectors $oldsymbol{u} = oldsymbol{i} - oldsymbol{j}$ and $oldsymbol{v} = 2oldsymbol{i} + oldsymbol{j}$, evaluate each of the following. (i) $oldsymbo... show full transcript

Worked Solution & Example Answer:For the vectors $oldsymbol{u} = oldsymbol{i} - oldsymbol{j}$ and $oldsymbol{v} = 2oldsymbol{i} + oldsymbol{j}$, evaluate each of the following - HSC - SSCE Mathematics Extension 1 - Question 11 - 2022 - Paper 1

Step 1

(i) $\boldsymbol{u} + 3\boldsymbol{v}$

96%

114 rated

Answer

To evaluate u+3v\boldsymbol{u} + 3\boldsymbol{v}, substituting the values of u\boldsymbol{u} and v\boldsymbol{v} gives:

u+3v=(ij)+3(2i+j)\boldsymbol{u} + 3\boldsymbol{v} = (\boldsymbol{i} - \boldsymbol{j}) + 3(2\boldsymbol{i} + \boldsymbol{j})

Expanding this:

=ij+6i+3j= \boldsymbol{i} - \boldsymbol{j} + 6\boldsymbol{i} + 3\boldsymbol{j}

Combining like terms:

=7i+2j= 7\boldsymbol{i} + 2\boldsymbol{j}

Step 2

(ii) $\boldsymbol{u} \bullet \boldsymbol{v}$

99%

104 rated

Answer

To evaluate the dot product uv\boldsymbol{u} \bullet \boldsymbol{v}:

uv=(ij)(2i+j)\boldsymbol{u} \bullet \boldsymbol{v} = (\boldsymbol{i} - \boldsymbol{j}) \bullet (2\boldsymbol{i} + \boldsymbol{j})

Calculating:

=(1)(2)+(1)(1)= (1)(2) + (-1)(1)

Simplifying gives:

=21=1= 2 - 1 = 1

Step 3

Find the exact value of $\int_0^1 \frac{x}{\sqrt{x^2 + 4}} \, dx$ using the substitution $u = x^2 + 4$

96%

101 rated

Answer

Using the substitution u=x2+4u = x^2 + 4, we differentiate to find:

du=2xdxdx=du2xdu = 2x \, dx \Rightarrow dx = \frac{du}{2x}

Changing the limits of integration:

  • When x=0x = 0, u=4u = 4.
  • When x=1x = 1, u=5u = 5.

Now substituting into the integral:

01xx2+4dx=45xudu2x=4512udu\int_0^1 \frac{x}{\sqrt{x^2 + 4}} \, dx = \int_4^5 \frac{x}{\sqrt{u}} \cdot \frac{du}{2x} = \int_4^5 \frac{1}{2\sqrt{u}} \, du

Integrating gives:

=12[2u]45=[u]45=52= \frac{1}{2} [2\sqrt{u}]_4^5 = [\sqrt{u}]_4^5 = \sqrt{5} - 2

Step 4

Find the coefficients of $x^2$ and $x^3$ in the expansion of $(1 - \frac{x}{2})^8$

98%

120 rated

Answer

Using the binomial theorem:

(1x2)n=k=0n(nk)(x2)k(1 - \frac{x}{2})^n = \sum_{k=0}^{n} \binom{n}{k} (-\frac{x}{2})^k

For x2x^2 (where k=2k = 2):

Coefficient of x2=(82)(12)2=87214=14\text{Coefficient of } x^2 = \binom{8}{2} \left(-\frac{1}{2}\right)^2 = \frac{8 \cdot 7}{2} \cdot \frac{1}{4} = 14

For x3x^3 (where k=3k = 3):

Coefficient of x3=(83)(12)3=876618=7\text{Coefficient of } x^3 = \binom{8}{3} \left(-\frac{1}{2}\right)^3 = \frac{8 \cdot 7 \cdot 6}{6} \cdot -\frac{1}{8} = -7

Step 5

The vectors $\boldsymbol{u}$ and $\boldsymbol{v}$ are perpendicular. What are the possible values of $a$?

97%

117 rated

Answer

To find if the vectors are perpendicular, we set:

uv=0\boldsymbol{u} \bullet \boldsymbol{v} = 0

Calculating the dot product:

uv=(a2)(a74a1)+(a74a1)(a2)=0\boldsymbol{u} \bullet \boldsymbol{v} = \left(\frac{a}{2}\right)\left(\frac{a - 7}{4a - 1}\right) + \left(\frac{a - 7}{4a - 1}\right)\left(\frac{a}{2}\right) = 0

This simplifies to:

a(a7)(4a1)=0\frac{a(a-7)}{(4a-1)} = 0

Hence, either a=0a = 0 or a=7a = 7. Testing each, we find:

  • a=2a = -2 leads to valid solutions where uv=0\boldsymbol{u} \bullet \boldsymbol{v} = 0 . Therefore, a=2a = -2 or a=7a = 7.

Step 6

Express $\sqrt{3}\sin(x) - 3\cos(x)$ in the form $R\sin(x + \alpha)$

97%

121 rated

Answer

To express the equation in the desired form, we find RR and α\alpha:

We set:

R=(3)2+(3)2=3+9=12=23R = \sqrt{(\sqrt{3})^2 + (-3)^2} = \sqrt{3 + 9} = \sqrt{12} = 2\sqrt{3}

Using tan(α)=Coefficient of cosCoefficient of sin=33ightarrowα=π3.\tan(\alpha) = \frac{\text{Coefficient of } \cos}{\text{Coefficient of } \sin} = \frac{-3}{\sqrt{3}} ightarrow \alpha = -\frac{\pi}{3}.

Thus, we have:

3sin(x)3cos(x)=23sin(xπ3)\sqrt{3}\sin(x) - 3\cos(x) = 2\sqrt{3}\sin\left(x - \frac{\pi}{3}\right)

Step 7

Solve $\frac{x}{2 - x} \geq 5$

96%

114 rated

Answer

Starting from the inequality:

x2x50\frac{x}{2 - x} - 5 \geq 0

This can be rewritten as:

x5(2x)2x0\frac{x - 5(2 - x)}{2 - x} \geq 0

Simplifying gives:

6x102x0\frac{6x - 10}{2 - x} \geq 0

This implies critical values are x=5/3x = 5/3 and x=2x = 2. Testing intervals around these critical points gives:

The solution is x53x \leq \frac{5}{3} or x>2x > 2.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;