Photo AI

For the vectors egin{align*} oldsymbol{u} &= oldsymbol{i} - oldsymbol{j}, \\ oldsymbol{v} &= 2oldsymbol{i} + oldsymbol{j} \\ ext{evaluate each of the following.} \\ oldsymbol{(i)} \\ oldsymbol{u + 3v} \\ oldsymbol{(ii)} \\ oldsymbol{u ullet v} \\ ext{(b) Find the exact value of} \\ oldsymbol{ rac{1}{2} extstyleigg( extstyle rac{x}{oldsymbol{ oot{2}}{x^{2}+4}} igg)} \\ ext{using the substitution} \\ oldsymbol{u = x^{2} + 4} - HSC - SSCE Mathematics Extension 1 - Question 11 - 2022 - Paper 1

Question icon

Question 11

For-the-vectors--egin{align*}-oldsymbol{u}-&=-oldsymbol{i}---oldsymbol{j},-\\-oldsymbol{v}-&=-2oldsymbol{i}-+-oldsymbol{j}-\\--ext{evaluate-each-of-the-following.}-\\-oldsymbol{(i)}-\\-oldsymbol{u-+-3v}-\\-oldsymbol{(ii)}-\\-oldsymbol{u-ullet-v}-\\--ext{(b)-Find-the-exact-value-of}-\\-oldsymbol{-rac{1}{2}-extstyleigg(--extstyle-rac{x}{oldsymbol{-oot{2}}{x^{2}+4}}-igg)}-\\--ext{using-the-substitution}-\\-oldsymbol{u-=-x^{2}-+-4}-HSC-SSCE Mathematics Extension 1-Question 11-2022-Paper 1.png

For the vectors egin{align*} oldsymbol{u} &= oldsymbol{i} - oldsymbol{j}, \\ oldsymbol{v} &= 2oldsymbol{i} + oldsymbol{j} \\ ext{evaluate each of the follow... show full transcript

Worked Solution & Example Answer:For the vectors egin{align*} oldsymbol{u} &= oldsymbol{i} - oldsymbol{j}, \\ oldsymbol{v} &= 2oldsymbol{i} + oldsymbol{j} \\ ext{evaluate each of the following.} \\ oldsymbol{(i)} \\ oldsymbol{u + 3v} \\ oldsymbol{(ii)} \\ oldsymbol{u ullet v} \\ ext{(b) Find the exact value of} \\ oldsymbol{ rac{1}{2} extstyleigg( extstyle rac{x}{oldsymbol{ oot{2}}{x^{2}+4}} igg)} \\ ext{using the substitution} \\ oldsymbol{u = x^{2} + 4} - HSC - SSCE Mathematics Extension 1 - Question 11 - 2022 - Paper 1

Step 1

u + 3v

96%

114 rated

Answer

First, calculate the expression for u + 3v:

oldsymbol{u + 3v} = (oldsymbol{i} - oldsymbol{j}) + 3(2oldsymbol{i} + oldsymbol{j}) = oldsymbol{i} - oldsymbol{j} + 6oldsymbol{i} + 3oldsymbol{j} = 7oldsymbol{i} + 2oldsymbol{j}.

Step 2

u • v

99%

104 rated

Answer

Next, compute the dot product u • v:

oldsymbol{u ullet v} = (1)(2) + (-1)(1) = 2 - 1 = 1.

Step 3

Find the exact value of \int_0^1 \frac{x}{\sqrt{x^2 + 4}} dx using u = x^2 + 4.

96%

101 rated

Answer

To solve this integral, use the substitution (u = x^2 + 4), which gives (du = 2x dx). Thus, we have:

dx=du2xdx = \frac{du}{2x}

Next, change the limits of integration. When (x = 0), (u = 4) and when (x = 1), (u = 5).

The integral then becomes:

01xx2+4dx=12451udu=12[2u]45=[54]=52.\int_0^1 \frac{x}{\sqrt{x^2 + 4}} dx = \frac{1}{2} \int_4^5 \frac{1}{\sqrt{u}} du = \frac{1}{2} [2\sqrt{u}]_4^5 = [\sqrt{5} - \sqrt{4}] = \sqrt{5} - 2.

So the exact value is (\sqrt{5} - 2).

Step 4

Find the coefficients of x^2 and x^3 in the expansion of \left(1 - \frac{x}{2}\right)^{8}.

98%

120 rated

Answer

Using the binomial theorem:

(a+b)n=k=0n(nk)ankbk,(a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k,

set (a = 1), (b = -\frac{x}{2}), and (n = 8).

The coefficient of (x^2) is:

(82)(12)2=2814=7.\binom{8}{2}(-\frac{1}{2})^2 = 28 \cdot \frac{1}{4} = 7.

The coefficient of (x^3) is:

(83)(12)3=5618=7.\binom{8}{3}(-\frac{1}{2})^3 = 56 \cdot -\frac{1}{8} = -7.

Thus, the coefficients are 7 and -7 for (x^2) and (x^3) respectively.

Step 5

The vectors u = \frac{(a)}{2} and y = \frac{(a - 7)}{4a - 1} are perpendicular.

97%

117 rated

Answer

For the vectors (u) and (v) to be perpendicular, their dot product must equal zero:

uv=0(a)2(a7)4a1=0\begin{aligned} u \bullet v &= 0 \Rightarrow \frac{(a)}{2} \cdot \frac{(a - 7)}{4a - 1} = 0 \end{aligned}

This leads to:

a(a7)2(a+7)=0a27a+2=0.a(a - 7) - 2(a + 7) = 0 \Rightarrow a^2 - 7a + 2 = 0.

We can solve this quadratic for (a) using the quadratic formula:

a=7±(7)241221=7±4982=7±412.a = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} = \frac{7 \pm \sqrt{49 - 8}}{2} = \frac{7 \pm \sqrt{41}}{2}.

Step 6

Express \sqrt{3}sin(x) - 3cos(x) in the form Rsin(x + α).

97%

121 rated

Answer

To express the given function in the desired form, first identify R and α:

R=(3)2+(3)2=3+9=12=23,R = \sqrt{(\sqrt{3})^2 + (-3)^2} = \sqrt{3 + 9} = \sqrt{12} = 2\sqrt{3},

and then,

tan(α)=33=3tan(α) = \frac{-3}{\sqrt{3}} = -\sqrt{3} implies that (α = -\frac{\pi}{3} + 2k\pi, \forall k \in \mathbb{Z}.$$

Thus,

3sin(x)3cos(x)=23sin(xπ3).\sqrt{3}sin(x) - 3cos(x) = 2\sqrt{3}sin(x - \frac{\pi}{3}).

Step 7

Solve \frac{x}{2 - x} \leq 5.

96%

114 rated

Answer

To solve this inequality:

  1. Rewrite it:

x5(2x)x \leq 5(2 - x)

  1. Rearrange:

x+5x10x + 5x \leq 10

  1. Combine like terms:

6x10x53.6x \leq 10 \Rightarrow x \leq \frac{5}{3}.

  1. Identify critical points by setting the denominator to zero:

2x=0x=2.2 - x = 0 \Rightarrow x = 2.

  1. Consider test intervals (e.g., (-∞, 2), (2, 5/3), and (5/3, ∞)).
  2. Collect valid intervals, which yield the final answer.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;