Photo AI
Question 11
11. Use a SEPARATE writing booklet. (a) Find \( \int \sin x^2 \, dx \). (b) Calculate the size of the acute angle between the lines \( y = 2x + 5 \) and \( y = 4 -... show full transcript
Step 1
Step 2
Answer
First, identify the slopes of the lines:
The angle ( \theta ) between the lines can be calculated using:
Thus, ( \theta = \tan^{-1}(1) = \frac{\pi}{4} ) radians.
Step 3
Answer
To solve this inequality, first rewrite it as:
Next, find the critical points by setting the numerator and denominator equal to zero:
Using a number line, test intervals to find the solution where the inequality holds. The answer is ( -3 < x \leq 1 ) as the critical points are included or excluded based on the signs.
Step 4
Answer
To express this in the desired form, identify ( A ) and ( \alpha ) using the formula:
Next, determine ( \alpha ) using:
Thus, solving gives:
We can find ( \alpha ) using the inverse tangent, but adjust based on the quadrant.
Step 5
Answer
With the substitution ( u = 2x - 1 ), we have ( du = 2 , dx ) hence ( dx = \frac{du}{2} ). Now substitute and simplify:
Substituting back for ( u ) yields the final answer: ( -\frac{1}{2(2x-1)^2} + C ).
Step 6
Step 7
Report Improved Results
Recommend to friends
Students Supported
Questions answered
Absolute value functions
Mathematics Extension 1 - HSC
Arrangement of n objects when some are identical
Mathematics Extension 1 - HSC
Bernoulli trials
Mathematics Extension 1 - HSC
Binomial distribution
Mathematics Extension 1 - HSC
Combinations
Mathematics Extension 1 - HSC
Counting techniques in probability
Mathematics Extension 1 - HSC
Definite integrals and substitution
Mathematics Extension 1 - HSC
Differentiation of inverse trigonometric functions
Mathematics Extension 1 - HSC
Direction fields
Mathematics Extension 1 - HSC
Division of polynomials and the remainder theorem
Mathematics Extension 1 - HSC
Double angle formulae
Mathematics Extension 1 - HSC
Expansion of (1 + x)^n, Pascal’s triangle
Mathematics Extension 1 - HSC
Exponential growth and decay
Mathematics Extension 1 - HSC
Fundamental counting principle
Mathematics Extension 1 - HSC
Graphing polynomials by adding ordinates
Mathematics Extension 1 - HSC
Graphing polynomials by multiplying ordinates
Mathematics Extension 1 - HSC
Half-angle formulae
Mathematics Extension 1 - HSC
Harder exponential growth and decay
Mathematics Extension 1 - HSC
Indefinite integrals and substitution
Mathematics Extension 1 - HSC
Inequalities involving absolute value and square roots
Mathematics Extension 1 - HSC
Integrals involving trigonometric substitution
Mathematics Extension 1 - HSC
Integrals of the type ∫f(x)(f(x))^n dx
Mathematics Extension 1 - HSC
Integration involving inverse trigonometric functions
Mathematics Extension 1 - HSC
Integration of sin^2x and cos^2x
Mathematics Extension 1 - HSC
Introduction to differential equations
Mathematics Extension 1 - HSC
Introduction to vectors
Mathematics Extension 1 - HSC
Inverse functions
Mathematics Extension 1 - HSC
Inverse trigonometric functions
Mathematics Extension 1 - HSC
Mathematical induction involving series
Mathematics Extension 1 - HSC
Mean and variance of the binomial distribution
Mathematics Extension 1 - HSC
Modelling with first-order differential equations
Mathematics Extension 1 - HSC
More Pascal’s triangle expansions
Mathematics Extension 1 - HSC
Multiple roots of a polynomial equation
Mathematics Extension 1 - HSC
Normal approximation for the sample proportion
Mathematics Extension 1 - HSC
Parametric form of a function or relation
Mathematics Extension 1 - HSC
Pascal’s triangle relations and the binomial theorem
Mathematics Extension 1 - HSC
Permutations
Mathematics Extension 1 - HSC
Pigeonhole principle
Mathematics Extension 1 - HSC
Polynomial functions
Mathematics Extension 1 - HSC
Polynomials
Mathematics Extension 1 - HSC
Problems involving displacement and velocity
Mathematics Extension 1 - HSC
Problems involving forces
Mathematics Extension 1 - HSC
Projectile motion
Mathematics Extension 1 - HSC
Projections of vectors
Mathematics Extension 1 - HSC
Proving divisibility by induction
Mathematics Extension 1 - HSC
Quadratic inequalities
Mathematics Extension 1 - HSC
Rates of change with respect to time
Mathematics Extension 1 - HSC
Rational function inequalities
Mathematics Extension 1 - HSC
Reciprocal functions
Mathematics Extension 1 - HSC
Related rates of change
Mathematics Extension 1 - HSC
Relationship between roots and coefficients
Mathematics Extension 1 - HSC
Scalar product of vectors
Mathematics Extension 1 - HSC
Simple trigonometric equations
Mathematics Extension 1 - HSC
Solving differential equations of the form dy/dx = f(x)
Mathematics Extension 1 - HSC
Solving differential equations of the form dy/dx = g(y)
Mathematics Extension 1 - HSC
Solving differential equations using separation of variables
Mathematics Extension 1 - HSC
Solving equations using angle formulae
Mathematics Extension 1 - HSC
Solving quadratic trigonometric equations
Mathematics Extension 1 - HSC
Solving trigonometric equations using the auxiliary angle method
Mathematics Extension 1 - HSC
Square root functions
Mathematics Extension 1 - HSC
Sum and difference of two angles
Mathematics Extension 1 - HSC
The factor theorem
Mathematics Extension 1 - HSC
Trigonometric equations involving angle formulae
Mathematics Extension 1 - HSC
Trigonometric products as sums or differences
Mathematics Extension 1 - HSC
Using identities to simplify expressions and prove results
Mathematics Extension 1 - HSC
Vectors in component form
Mathematics Extension 1 - HSC
Vectors in geometric proofs
Mathematics Extension 1 - HSC
Vectors in two dimensions
Mathematics Extension 1 - HSC
Velocity and acceleration as rates of change
Mathematics Extension 1 - HSC
Volumes of solids of revolution
Mathematics Extension 1 - HSC