Photo AI

Find $$\frac{d}{dx}(2\sin^{-1}(5x)).$$ Use the binomial theorem to find the term independent of $x$ in the expansion of $$\left(2x-\frac{1}{x^2}\right)^{12}.$$ (i) Differentiate $$e^{x}(\cos x - 3\sin x).$$ (ii) Hence, or otherwise, find $$\int e^{3x}\sin x\,dx.$$ A salad, which is initially at a temperature of 25°C, is placed in a refrigerator that has a constant temperature of 3°C - HSC - SSCE Mathematics Extension 1 - Question 2 - 2005 - Paper 1

Question icon

Question 2

Find-$$\frac{d}{dx}(2\sin^{-1}(5x)).$$--Use-the-binomial-theorem-to-find-the-term-independent-of-$x$-in-the-expansion-of-$$\left(2x-\frac{1}{x^2}\right)^{12}.$$----(i)-Differentiate-$$e^{x}(\cos-x---3\sin-x).$$----(ii)-Hence,-or-otherwise,-find-$$\int-e^{3x}\sin-x\,dx.$$----A-salad,-which-is-initially-at-a-temperature-of-25°C,-is-placed-in-a-refrigerator-that-has-a-constant-temperature-of-3°C-HSC-SSCE Mathematics Extension 1-Question 2-2005-Paper 1.png

Find $$\frac{d}{dx}(2\sin^{-1}(5x)).$$ Use the binomial theorem to find the term independent of $x$ in the expansion of $$\left(2x-\frac{1}{x^2}\right)^{12}.$$ (... show full transcript

Worked Solution & Example Answer:Find $$\frac{d}{dx}(2\sin^{-1}(5x)).$$ Use the binomial theorem to find the term independent of $x$ in the expansion of $$\left(2x-\frac{1}{x^2}\right)^{12}.$$ (i) Differentiate $$e^{x}(\cos x - 3\sin x).$$ (ii) Hence, or otherwise, find $$\int e^{3x}\sin x\,dx.$$ A salad, which is initially at a temperature of 25°C, is placed in a refrigerator that has a constant temperature of 3°C - HSC - SSCE Mathematics Extension 1 - Question 2 - 2005 - Paper 1

Step 1

Find $$\frac{d}{dx}(2\sin^{-1}(5x)).$$

96%

114 rated

Answer

To find the derivative, we use the chain rule. We know that the derivative of sin1(u)\sin^{-1}(u) is 11u2dudx\frac{1}{\sqrt{1 - u^2}}\frac{du}{dx}.

Letting u=5xu = 5x, we find:

ddx(2sin1(5x))=211(5x)25=10125x2.\frac{d}{dx}(2\sin^{-1}(5x)) = 2 \cdot \frac{1}{\sqrt{1 - (5x)^2}} \cdot 5 = \frac{10}{\sqrt{1 - 25x^2}}.

Step 2

Use the binomial theorem to find the term independent of $x$ in the expansion of $$\left(2x-\frac{1}{x^2}\right)^{12}.$$

99%

104 rated

Answer

The binomial theorem states that:

(a+b)n=k=0n(nk)ankbk. (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k.

Here, let a=2xa = 2x and b=1x2b = -\frac{1}{x^2}. We need to find the term where the total power of xx is zero:

  • The general term is given by: Tk=(12k)(2x)12k(1x2)k=(12k)212k(1)kx12k2k=(12k)212k(1)kx123k.T_k = \binom{12}{k} (2x)^{12-k} \left(-\frac{1}{x^2}\right)^k = \binom{12}{k} 2^{12-k} (-1)^k x^{12-k - 2k} = \binom{12}{k} 2^{12-k} (-1)^k x^{12 - 3k}.
  • Set 123k=012 - 3k = 0 which gives us k=4k = 4.

Therefore, the independent term is:

(124)28(1)4=12!4!8!256=495256=126720. \binom{12}{4} 2^{8} (-1)^4 = \frac{12!}{4!8!} \cdot 256 = 495 \cdot 256 = 126720.

Step 3

Differentiate $$e^{x}(\cos x - 3\sin x).$$

96%

101 rated

Answer

To differentiate this product, we use the product rule:

If u=exu = e^{x} and v=cosx3sinxv = \cos x - 3\sin x, then:

ddx(uv)=udvdx+vdudx.\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.

Calculating:

  • For uu: dudx=ex.\frac{du}{dx} = e^{x}.
  • For vv: dvdx=sinx3cosx.\frac{dv}{dx} = -\sin x - 3\cos x.

Thus, the derivative is:

ex(sinx3cosx)+(cosx3sinx)ex=ex(sinx3cosx+cosx3sinx)=ex(4sinx2cosx).e^{x}(-\sin x - 3\cos x) + (\cos x - 3\sin x)e^{x} = e^{x}(-\sin x - 3\cos x + \cos x - 3\sin x) = e^{x}(-4\sin x - 2\cos x).

Step 4

Hence, or otherwise, find $$\int e^{3x}\sin x\,dx.$$

98%

120 rated

Answer

To find this integral, we use integration by parts or find a suitable formula.

  • Using integration by parts, let I=e3xsinxdx.I = \int e^{3x}\sin x \,dx.
    Using integration by parts, we can express:

I=110e3x(cosx)+310e3xsinxdx.I = \frac{1}{10} e^{3x}(-\cos x) + \frac{3}{10} \int e^{3x}\sin x \,dx.

Solving this gives:

I=110e3x(cosx)+310I.I = \frac{1}{10} e^{3x}(-\cos x) + \frac{3}{10} I.

Thus, we can solve for I:

710I=110e3xcosxI=17e3xcosx. \frac{7}{10} I = -\frac{1}{10} e^{3x} \cos x \\ I = -\frac{1}{7} e^{3x} \cos x.

Step 5

Show that $$T = 3 + Ae^{-kt}$$ satisfies this equation.

97%

117 rated

Answer

To prove that T=3+AektT = 3 + Ae^{-kt} satisfies the differential equation dTdt=k(T3)\frac{dT}{dt} = -k(T - 3):

  • Differentiate: dTdt=kAekt\frac{dT}{dt} = -kAe^{-kt}.
  • Substitute TT into the differential equation: k(3+Aekt3)=k(Aekt).-k(3 + Ae^{-kt} - 3) = -k(Ae^{-kt}). Thus, both sides are equal, confirming that T=3+AektT = 3 + Ae^{-kt} is a valid solution.

Step 6

The temperature of the salad is 11°C after 10 minutes. Find the temperature of the salad after 15 minutes.

97%

121 rated

Answer

From our equation T=3+AektT = 3 + Ae^{-kt}, we can determine AA using the initial condition. At t=10t=10, T(10)=11,T(10) = 11, so:

  • Plugging in: 11=3+Ae10k11 = 3 + Ae^{-10k}
    Thus, A=8+e10kA = 8 + e^{10k}.
  • Next, to find T(15)T(15), substitute t=15t=15: T(15)=3+Ae15kT(15) = 3 + A e^{-15k}. Using our earlier value for AA gives: T(15)=3+(8+e10k)e15k=3+8e15k+e5k.T(15) = 3 + (8 + e^{10k}) e^{-15k} = 3 + 8e^{-15k} + e^{-5k}.
    We simplify this depending on the value of kk.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;