Photo AI
Question 1
a) Find \( \int \frac{dx}{49 + x^2} \) b) Using the substitution \( u = x^2 + 8 \), or otherwise, find \( \int x \sqrt{4 + 8} \, dx \). c) Evaluate \( \lim_{x \to ... show full transcript
Step 1
Step 2
Answer
First, let’s clarify the integral to evaluate:
[ \int x \sqrt{4 + 8} , dx = \int x \sqrt{12} , dx ]
This simplifies to:
[ \int x \cdot 2\sqrt{3} , dx = 2\sqrt{3} \int x , dx = 2\sqrt{3} \cdot \frac{x^2}{2} + C = \sqrt{3} x^2 + C ]
Step 3
Answer
To find this limit, we can apply L'Hôpital's rule since direct substitution results in the indeterminate form ( \frac{0}{0} ):
[ \lim_{x \to 0} \frac{\sin 5x}{3x} = \lim_{x \to 0} \frac{5\cos 5x}{3} = \frac{5\cos(0)}{3} = \frac{5}{3} ]
Step 4
Answer
Using the identity for the sum of cubes:
[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) ]
Set ( a = \sin \theta ) and ( b = \cos \theta ). Thus,
[ \sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta) ]
This simplifies to:
[ \sin^2 \theta + \cos^2 \theta - \sin \theta \cos \theta = 1 - \sin \theta \cos \theta ]
Therefore, the expression becomes:
[ \frac{1 - \sin \theta \cos \theta}{\sin \theta + \cos \theta} - 1 = \frac{-\sin \theta \cos \theta - (\sin \theta + \cos \theta)}{\sin \theta + \cos \theta} = -1 ]
Step 5
Answer
For the line to be tangent to the curve, both the slope and the point of intersection must match at some point ( x = a ):
Thus, the values of ( b ) are ( -16 ) and ( 16 ).
Report Improved Results
Recommend to friends
Students Supported
Questions answered