Photo AI

Use the table of standard integrals to find the exact value of $$ \int_{0}^{2} \frac{dx}{\sqrt{16 - x^{2}}} - HSC - SSCE Mathematics Extension 1 - Question 1 - 2001 - Paper 1

Question icon

Question 1

Use-the-table-of-standard-integrals-to-find-the-exact-value-of-$$-\int_{0}^{2}-\frac{dx}{\sqrt{16---x^{2}}}-HSC-SSCE Mathematics Extension 1-Question 1-2001-Paper 1.png

Use the table of standard integrals to find the exact value of $$ \int_{0}^{2} \frac{dx}{\sqrt{16 - x^{2}}}. $$ Find $$ \frac{d}{dx}(x \sin^{2} x). $$ Evaluate $$ ... show full transcript

Worked Solution & Example Answer:Use the table of standard integrals to find the exact value of $$ \int_{0}^{2} \frac{dx}{\sqrt{16 - x^{2}}} - HSC - SSCE Mathematics Extension 1 - Question 1 - 2001 - Paper 1

Step 1

Use the table of standard integrals to find the exact value of $$\int_{0}^{2} \frac{dx}{\sqrt{16 - x^{2}}}$$.

96%

114 rated

Answer

To evaluate this integral, we recognize it as an inverse trigonometric function. We can use the substitution x=4sinθx = 4 \sin{\theta}, leading to a new integral in terms of θ\theta. The integral simplifies to:

0π6dθ=π6.\int_{0}^{\frac{\pi}{6}} d\theta = \frac{\pi}{6}.

Step 2

Find $$\frac{d}{dx}(x \sin^{2} x)$$.

99%

104 rated

Answer

We use the product rule for differentiation:

ddx(uv)=uv+uv\frac{d}{dx}(u \cdot v) = u'v + uv',

where u=xu = x and v=sin2xv = \sin^{2} x. Calculating:

  • u=1u' = 1,
  • v=2sinxcosx=sin2xv' = 2\sin{x}\cos{x} = \sin{2x},

So,

ddx(xsin2x)=1sin2x+xsin2x.\frac{d}{dx}(x \sin^{2} x) = 1 \cdot \sin^{2} x + x \cdot \sin{2x}.

Step 3

Evaluate $$\sum_{n=4}^{7}(2n + 3)$$.

96%

101 rated

Answer

Calculating each term:

  • For n=4: 2(4)+3=112(4) + 3 = 11,
  • For n=5: 2(5)+3=132(5) + 3 = 13,
  • For n=6: 2(6)+3=152(6) + 3 = 15,
  • For n=7: 2(7)+3=172(7) + 3 = 17.

The total sum is:

11+13+15+17=56.11 + 13 + 15 + 17 = 56.

Step 4

Let A be the point (−2, 7) and let B be the point (1, 5). Find the coordinates of the point P which divides the interval AB externally in the ratio 1 : 2.

98%

120 rated

Answer

Using the section formula for external division:

P=(mx2nx1mn,my2ny1mn)P = \left(\frac{mx_{2} - nx_{1}}{m - n}, \frac{my_{2} - ny_{1}}{m - n}\right), where m = 1 and n = 2:

P=(112(2)12,152712)=(3,9).P = \left(\frac{1 \cdot 1 - 2 \cdot (-2)}{1 - 2}, \frac{1 \cdot 5 - 2 \cdot 7}{1 - 2}\right) = (3, -9).

Step 5

Is x + 3 a factor of $$x^{3} - 5x + 12$$? Give reasons for your answer.

97%

117 rated

Answer

To determine if x+3x + 3 is a factor, we apply the Factor Theorem. We evaluate the polynomial at x=3x = -3:

(3)35(3)+12=27+15+12=0.(-3)^{3} - 5(-3) + 12 = -27 + 15 + 12 = 0.

Since the result is zero, x+3x + 3 is indeed a factor.

Step 6

Use the substitution $$u = 1 + x$$ to evaluate $$15 \int_{-1}^{1} \frac{dx}{\sqrt{1 + x}}$$.

97%

121 rated

Answer

Using the substitution u=1+xu = 1 + x, we find:

  • When x=1x = -1, u=0u = 0;
  • When x=1x = 1, u=2u = 2.

Thus, we convert the integral:

15021udu=15[2u]02=15(220)=302.15 \int_{0}^{2} \frac{1}{\sqrt{u}} du = 15[2\sqrt{u}]_{0}^{2} = 15(2 \cdot \sqrt{2} - 0) = 30 \sqrt{2}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;