Photo AI

Evaluate $$\lim_{x \to 0} \frac{\sin 3x}{x}$$ (b) Find $$\frac{d}{dx}(3x^{2} \ln x)$$ for $x > 0$ - HSC - SSCE Mathematics Extension 1 - Question 1 - 2002 - Paper 1

Question icon

Question 1

Evaluate---$$\lim_{x-\to-0}-\frac{\sin-3x}{x}$$----(b)-Find---$$\frac{d}{dx}(3x^{2}-\ln-x)$$-for--$x->-0$-HSC-SSCE Mathematics Extension 1-Question 1-2002-Paper 1.png

Evaluate $$\lim_{x \to 0} \frac{\sin 3x}{x}$$ (b) Find $$\frac{d}{dx}(3x^{2} \ln x)$$ for $x > 0$. (c) Use the table of standard integrals to evaluate $... show full transcript

Worked Solution & Example Answer:Evaluate $$\lim_{x \to 0} \frac{\sin 3x}{x}$$ (b) Find $$\frac{d}{dx}(3x^{2} \ln x)$$ for $x > 0$ - HSC - SSCE Mathematics Extension 1 - Question 1 - 2002 - Paper 1

Step 1

Evaluate $$\lim_{x \to 0} \frac{\sin 3x}{x}$$

96%

114 rated

Answer

To find this limit, we can use the standard limit result:
limx0sinkxx=k\lim_{x \to 0} \frac{\sin kx}{x} = k,
where k=3k = 3. Thus,
$$\lim_{x \to 0} \frac{\sin 3x}{x} = 3.$

Step 2

Find $$\frac{d}{dx}(3x^{2} \ln x)$$ for $x > 0$.

99%

104 rated

Answer

Using the product rule for differentiation:
ddx(uv)=uv+uv\frac{d}{dx}(uv) = u'v + uv', where u=3x2u = 3x^{2} and v=lnxv = \ln x.
Calculating:

  • u=6xu' = 6x,
  • v=1xv' = \frac{1}{x}.
    Thus,
    $$\frac{d}{dx}(3x^{2} \ln x) = 6x \ln x + 3x^{2} \cdot \frac{1}{x} = 6x \ln x + 3x.$

Step 3

Use the table of standard integrals to evaluate $$\int_{0}^{\frac{\pi}{3}} \sec 2x \tan 2x \, dx$$.

96%

101 rated

Answer

The integral can be evaluated using the standard result:
secxtanxdx=secx+C\int \sec x \tan x \, dx = \sec x + C.
Applying this,
sec2xtan2xdx=12sec2x+C.\int \sec 2x \tan 2x \, dx = \frac{1}{2} \sec 2x + C.
Evaluating from 00 to π3\frac{\pi}{3}:
$$\left[ \frac{1}{2} \sec 2x \right]_{0}^{\frac{\pi}{3}} = \frac{1}{2} \sec\left(\frac{2\pi}{3}\right) - \frac{1}{2} \sec(0) = \frac{1}{2} \left(-2\right) - \frac{1}{2} \cdot 1 = -1 - \frac{1}{2} = -\frac{3}{2}.$

Step 4

State the domain and range of the function $$f(x) = 3 \sin^{-1}(\frac{x}{2})$$.

98%

120 rated

Answer

For the function f(x)=3sin1(x2)f(x) = 3 \sin^{-1}(\frac{x}{2}), the argument x2\frac{x}{2} must lie within [1,1][-1, 1].

  • Setting up the inequalities:
    1x21-1 \leq \frac{x}{2} \leq 1
    leads to
    2x2.-2 \leq x \leq 2.
    Thus, the domain is [2,2][-2, 2].
  • The range of the inverse sine function is [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}], so multiplying by 3 gives a range of [3π2,3π2][-\frac{3\pi}{2}, \frac{3\pi}{2}].

Step 5

The variable point $(3t, 2t^{2})$ lies on a parabola. Find the Cartesian equation for this parabola.

97%

117 rated

Answer

Given the parametric equations: x=3tx = 3t and y=2t2y = 2t^{2}, we can express tt in terms of xx:
t=x3.t = \frac{x}{3}.
Substituting into the equation for yy:
y=2(x3)2=2x29=29x2.y = 2\left(\frac{x}{3}\right)^{2} = 2\cdot\frac{x^{2}}{9} = \frac{2}{9} x^{2}.
Thus, the Cartesian equation of the parabola is
y=29x2.y = \frac{2}{9} x^{2}.

Step 6

Use the substitution $$u = 1 - x^{2}$$ to evaluate $$\int_{\frac{2}{3}}^{2} \frac{2x}{(1 - x^{2})^{2}} \, dx$$.

97%

121 rated

Answer

Using the substitution u=1x2u = 1 - x^{2}:

  • Therefore, dudx=2xdx=du2x\frac{du}{dx} = -2x \Rightarrow dx = \frac{du}{-2x}.
  • Changing the limits:
    • When x=23x = \frac{2}{3}, u=1(23)2=59u = 1 - \left(\frac{2}{3}\right)^{2} = \frac{5}{9};
    • When x=2x = 2, u=122=3u = 1 - 2^{2} = -3.
      Substituting into the integral:
      5932xu2du2x=5931u2du.\int_{\frac{5}{9}}^{-3} \frac{2x}{u^{2}} \cdot \frac{du}{-2x} = -\int_{\frac{5}{9}}^{-3} \frac{1}{u^{2}} du.
      This leads to:
      $$-\left[ -\frac{1}{u} \right]{\frac{5}{9}}^{-3} = \left[\frac{1}{u}\right]{\frac{5}{9}}^{-3} = \left(\frac{1}{-3} - \frac{9}{5}\right) = -\frac{1}{3} - \frac{9}{5} = -\frac{1}{3} - \frac{27}{15} = -\frac{1}{3} - \frac{3}{5} = -\frac{5 + 9}{15} = -\frac{14}{15}.$

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;