Photo AI

For the vectors $\mathbf{u} = \mathbf{i} - \mathbf{j}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j}$, evaluate each of the following - HSC - SSCE Mathematics Extension 1 - Question 11 - 2022 - Paper 1

Question icon

Question 11

For-the-vectors-$\mathbf{u}-=-\mathbf{i}---\mathbf{j}$-and-$\mathbf{v}-=-2\mathbf{i}-+-\mathbf{j}$,-evaluate-each-of-the-following-HSC-SSCE Mathematics Extension 1-Question 11-2022-Paper 1.png

For the vectors $\mathbf{u} = \mathbf{i} - \mathbf{j}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j}$, evaluate each of the following. (i) $\mathbf{u} + 3\mathbf{v}$ ... show full transcript

Worked Solution & Example Answer:For the vectors $\mathbf{u} = \mathbf{i} - \mathbf{j}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j}$, evaluate each of the following - HSC - SSCE Mathematics Extension 1 - Question 11 - 2022 - Paper 1

Step 1

(i) $\mathbf{u} + 3\mathbf{v}$

96%

114 rated

Answer

To find u+3v\mathbf{u} + 3\mathbf{v}:

  1. Substitute the vectors: u=ij,v=2i+j\mathbf{u} = \mathbf{i} - \mathbf{j}, \quad \mathbf{v} = 2\mathbf{i} + \mathbf{j}

  2. Compute: u+3v=(ij)+3(2i+j)\mathbf{u} + 3\mathbf{v} = (\mathbf{i} - \mathbf{j}) + 3(2\mathbf{i} + \mathbf{j}) =ij+6i+3j= \mathbf{i} - \mathbf{j} + 6\mathbf{i} + 3\mathbf{j} =7i+2j= 7\mathbf{i} + 2\mathbf{j}

Step 2

(ii) $\mathbf{u} \cdot \mathbf{v}$

99%

104 rated

Answer

To calculate uv\mathbf{u} \cdot \mathbf{v}:

  1. Use the dot product: uv=(ij)(2i+j)\mathbf{u} \cdot \mathbf{v} = (\mathbf{i} - \mathbf{j}) \cdot (2\mathbf{i} + \mathbf{j})

  2. Compute the dot product: =12+(1)1= 1 \cdot 2 + (-1) \cdot 1 =21=1= 2 - 1 = 1

Step 3

Find the exact value of $\int_0^1 \frac{\sqrt{x}}{\sqrt{x^2 + 4}} \, dx$

96%

101 rated

Answer

To solve the integral:

  1. Use substitution: Let u=x2+4u = x^2 + 4, then du=2xdxdu = 2x \, dx.

  2. Change limits:

    • When x=0x = 0, u=4u = 4;
    • When x=1x = 1, u=5u = 5.
  3. Rewrite the integral: 01xx2+4dx=45u4u12du\int_0^1 \frac{\sqrt{x}}{\sqrt{x^2 + 4}} \, dx = \int_4^5 \frac{\sqrt{u - 4}}{\sqrt{u}} \cdot \frac{1}{2} \, du

  4. Simplify and solve: =1245u4udu= \frac{1}{2} \int_4^5 \frac{\sqrt{u - 4}}{\sqrt{u}} \, du =[52]= \left[ \sqrt{5} - 2 \right]

Step 4

Find the coefficients of $x^2$ and $x^3$ in the expansion of $\left( 1 - \frac{x}{2} \right)^8$

98%

120 rated

Answer

To find the coefficients:

  1. Use the binomial expansion: (1x2)8=k=08(8k)(x2)k\left(1 - \frac{x}{2}\right)^8 = \sum_{k=0}^{8} \binom{8}{k} \left(-\frac{x}{2}\right)^k

  2. For k=2k=2 (coefficient of x2x^2): (82)(12)2=2814=7\binom{8}{2}\left(-\frac{1}{2}\right)^2 = 28 \cdot \frac{1}{4} = 7

  3. For k=3k=3 (coefficient of x3x^3): (83)(12)3=5618=7\binom{8}{3}\left(-\frac{1}{2}\right)^3 = 56 \cdot -\frac{1}{8} = -7

Step 5

The vectors $\mathbf{u} = \begin{pmatrix} \frac{a}{2} \\ \frac{a-7}{4a-1} \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} \frac{a}{2} \\ \frac{a-7}{4a-1} \end{pmatrix}$ are perpendicular.

97%

117 rated

Answer

To determine aa:

  1. Set up the equation for perpendicularity: uv=0\mathbf{u} \cdot \mathbf{v} = 0 (a2)(a2)+(a74a1)(a74a1)=0\Rightarrow \left(\frac{a}{2}\right) \left(\frac{a}{2}\right) + \left(\frac{a-7}{4a-1}\right) \left(\frac{a-7}{4a-1}\right) = 0

  2. Solve the resulting polynomial: a(a7)=0a(a-7) = 0 a=2 or a=2\Rightarrow a = 2 \text { or } a = -2

Step 6

Express $\sqrt{3}\sin(x) - 3\cos(x)$ in the form $R\sin(x + \alpha)$

97%

121 rated

Answer

To express in the required form:

  1. Identify RR and α\alpha: R=(3)2+(3)2=3+9=23R = \sqrt{(\sqrt{3})^2 + (-3)^2} = \sqrt{3 + 9} = 2\sqrt{3}

  2. Find tan(α)\tan(\alpha): tan(α)=33=3\tan(\alpha) = \frac{-3}{\sqrt{3}} = -\sqrt{3} α=π3\Rightarrow \alpha = -\frac{\pi}{3}

  3. Therefore: 3sin(x)3cos(x)=23sin(xπ3)\sqrt{3}\sin(x) - 3\cos(x) = 2\sqrt{3}\sin\left(x - \frac{\pi}{3}\right)

Step 7

Solve $\frac{x}{2 - x} \geq 5$

96%

114 rated

Answer

To solve the inequality:

  1. Rearrange and clear the fraction: x5(2x)x \geq 5(2 - x) x+5x10\Rightarrow x + 5x \geq 10 6x10\Rightarrow 6x \geq 10 x53\Rightarrow x \geq \frac{5}{3}

  2. However, ensure the denominator is valid: 2x>0x<22 - x > 0 \Rightarrow x < 2

  3. Combine the conditions: 53x<2\frac{5}{3} \leq x < 2

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;