Photo AI

a) Find the inverse of the function $y = x^3 - 2$ - HSC - SSCE Mathematics Extension 1 - Question 11 - 2016 - Paper 1

Question icon

Question 11

a)-Find-the-inverse-of-the-function-$y-=-x^3---2$-HSC-SSCE Mathematics Extension 1-Question 11-2016-Paper 1.png

a) Find the inverse of the function $y = x^3 - 2$. b) Use the substitution $u = x - 4$ to find \( \int \sqrt{x - 4} \, dx \). c) Differentiate $3 \tan^{-1}(2x)$.... show full transcript

Worked Solution & Example Answer:a) Find the inverse of the function $y = x^3 - 2$ - HSC - SSCE Mathematics Extension 1 - Question 11 - 2016 - Paper 1

Step 1

Find the inverse of the function $y = x^3 - 2$

96%

114 rated

Answer

To find the inverse, we start by replacing yy with xx and xx with yy:

  1. Set x=y32x = y^3 - 2.

  2. Solve for yy:

    y3=x+2y^3 = x + 2
    y=x+23y = \sqrt[3]{x + 2}

Thus, the inverse function is f1(x)=x+23f^{-1}(x) = \sqrt[3]{x + 2}.

Step 2

Use the substitution $u = x - 4$ to find \( \int \sqrt{x - 4} \, dx \)

99%

104 rated

Answer

Using the substitution u=x4u = x - 4, we can express dxdx as dudu. Hence,

  1. Write the integral:
    udu\int \sqrt{u} \, du
  2. Integrate:
    =23u3/2+C= \frac{2}{3} u^{3/2} + C
  3. Substitute back:
    =23(x4)3/2+C= \frac{2}{3} (x - 4)^{3/2} + C

Step 3

Differentiate $3 \tan^{-1}(2x)$

96%

101 rated

Answer

Applying the chain rule:

  1. Let y=3tan1(2x)y = 3 \tan^{-1}(2x).
  2. Differentiate:
    dydx=3ddx(tan1(2x))\frac{dy}{dx} = 3 \cdot \frac{d}{dx}(\tan^{-1}(2x))
    =321+(2x)2= 3 \cdot \frac{2}{1 + (2x)^2}
    =61+4x2= \frac{6}{1 + 4x^2}

Step 4

Evaluate \( \lim_{x \to 0} \frac{2 \sin x \cos x}{3x} \)

98%

120 rated

Answer

Using the limit properties:

  1. Recognize that limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1:
    limx02sinxcosx3x=limx02cosx3sinxx\lim_{x \to 0} \frac{2 \sin x \cos x}{3x} = \lim_{x \to 0} \frac{2 \cos x}{3} \cdot \frac{\sin x}{x}
  2. Substitute limit values:
    =213=23= \frac{2 \cdot 1}{3} = \frac{2}{3}

Step 5

Solve \( \frac{3}{2x + 5} - x > 0 \)

97%

117 rated

Answer

Start by isolating the terms:

  1. Set the inequality:
    32x+5>x\frac{3}{2x + 5} > x
  2. Cross multiply:
    3>x(2x+5){3 > x(2x + 5)}
  3. Rearranging yields a quadratic inequality:
    2x2+5x+3<02x^2 + 5x + 3 < 0
  4. Solve the quadratic:
    x<3or32<x<52x < -3 \quad \text{or} \quad -\frac{3}{2} < x < -\frac{5}{2}

Step 6

Find the probability that she hits the bullseye with exactly one of her first three throws.

97%

121 rated

Answer

The outcome can be summarized using the binomial probability formula:

  1. Let the probability of hitting the bullseye be p=25p = \frac{2}{5} and missing be q=35q = \frac{3}{5}.
  2. The probability is given by:
    P(X=1)=(31)p1q31=325(35)2P(X = 1) = \binom{3}{1} p^1 q^{3-1} = 3 \cdot \frac{2}{5} \cdot \left(\frac{3}{5}\right)^2
  3. Calculating gives:
    =325925=54125= 3 \cdot \frac{2}{5} \cdot \frac{9}{25} = \frac{54}{125}

Step 7

Find the probability that she hits the bullseye with at least two of her first six throws.

96%

114 rated

Answer

Calculate the complementary probability:

  1. At least two means we consider one or none:
    P(X2)=1P(X=0)P(X=1)P(X \geq 2) = 1 - P(X = 0) - P(X = 1)
  2. Use the binomial formula:
    P(X=0)=(60)p0q6=(35)6andP(X=1)=(61)(25)1(35)5P(X = 0) = \binom{6}{0} p^0 q^6 = \left(\frac{3}{5}\right)^6 \quad \text{and} \quad P(X = 1) = \binom{6}{1} \left(\frac{2}{5}\right)^1 \left(\frac{3}{5}\right)^5
  3. Plugging in gives:
    =72915625+625(35)5== \frac{729}{15625} + 6 \cdot \frac{2}{5} \cdot \left(\frac{3}{5}\right)^5 = \cdots
  4. Final calculations yield the probability:
    =value= \text{value}

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;