Photo AI
Question 11
Use a SEPARATE writing booklet. (a) Solve \( (x + \frac{2}{x})^{2} - 6(x + \frac{2}{x}) + 9 = 0. \) (b) The probability that it rains on any particular day during ... show full transcript
Step 1
Answer
To solve the equation, let ( y = x + \frac{2}{x} ). The equation simplifies to:
This factors to:
Thus, ( y = 3 ). Now substituting back:
Multiplying through by ( x ) gives:
Factoring this, we find:
Thus, ( x = 1 ) and ( x = 2 ).
Step 2
Answer
Using the binomial probability formula, the expression for the probability of ( X ) being fewer than 3 can be expressed as:
Where ( X ) is the number of rainy days. Using ( p = 0.1 ) and ( n = 30 ), the probabilities will be calculated as follows:
for ( k = 0, 1, 2 ).
Step 3
Answer
The function ( y = 6 \tan^{-1}(x) ) is a continuous function. As ( x \to -\infty ), ( y \to -3\pi ) and as ( x \to \infty ), ( y \to 3\pi ). Thus, the range is:
To sketch:
Step 4
Answer
Using the substitution ( x = u^{2} + 1 ), we have ( dx = 2u , du ). Changing the limits:
Transforming the integral:
After simplifying and evaluating:
The final value yields the result.
Step 5
Step 6
Report Improved Results
Recommend to friends
Students Supported
Questions answered
Absolute value functions
Mathematics Extension 1 - HSC
Arrangement of n objects when some are identical
Mathematics Extension 1 - HSC
Bernoulli trials
Mathematics Extension 1 - HSC
Binomial distribution
Mathematics Extension 1 - HSC
Combinations
Mathematics Extension 1 - HSC
Counting techniques in probability
Mathematics Extension 1 - HSC
Definite integrals and substitution
Mathematics Extension 1 - HSC
Differentiation of inverse trigonometric functions
Mathematics Extension 1 - HSC
Direction fields
Mathematics Extension 1 - HSC
Division of polynomials and the remainder theorem
Mathematics Extension 1 - HSC
Double angle formulae
Mathematics Extension 1 - HSC
Expansion of (1 + x)^n, Pascal’s triangle
Mathematics Extension 1 - HSC
Exponential growth and decay
Mathematics Extension 1 - HSC
Fundamental counting principle
Mathematics Extension 1 - HSC
Graphing polynomials by adding ordinates
Mathematics Extension 1 - HSC
Graphing polynomials by multiplying ordinates
Mathematics Extension 1 - HSC
Half-angle formulae
Mathematics Extension 1 - HSC
Harder exponential growth and decay
Mathematics Extension 1 - HSC
Indefinite integrals and substitution
Mathematics Extension 1 - HSC
Inequalities involving absolute value and square roots
Mathematics Extension 1 - HSC
Integrals involving trigonometric substitution
Mathematics Extension 1 - HSC
Integrals of the type ∫f(x)(f(x))^n dx
Mathematics Extension 1 - HSC
Integration involving inverse trigonometric functions
Mathematics Extension 1 - HSC
Integration of sin^2x and cos^2x
Mathematics Extension 1 - HSC
Introduction to differential equations
Mathematics Extension 1 - HSC
Introduction to vectors
Mathematics Extension 1 - HSC
Inverse functions
Mathematics Extension 1 - HSC
Inverse trigonometric functions
Mathematics Extension 1 - HSC
Mathematical induction involving series
Mathematics Extension 1 - HSC
Mean and variance of the binomial distribution
Mathematics Extension 1 - HSC
Modelling with first-order differential equations
Mathematics Extension 1 - HSC
More Pascal’s triangle expansions
Mathematics Extension 1 - HSC
Multiple roots of a polynomial equation
Mathematics Extension 1 - HSC
Normal approximation for the sample proportion
Mathematics Extension 1 - HSC
Parametric form of a function or relation
Mathematics Extension 1 - HSC
Pascal’s triangle relations and the binomial theorem
Mathematics Extension 1 - HSC
Permutations
Mathematics Extension 1 - HSC
Pigeonhole principle
Mathematics Extension 1 - HSC
Polynomial functions
Mathematics Extension 1 - HSC
Polynomials
Mathematics Extension 1 - HSC
Problems involving displacement and velocity
Mathematics Extension 1 - HSC
Problems involving forces
Mathematics Extension 1 - HSC
Projectile motion
Mathematics Extension 1 - HSC
Projections of vectors
Mathematics Extension 1 - HSC
Proving divisibility by induction
Mathematics Extension 1 - HSC
Quadratic inequalities
Mathematics Extension 1 - HSC
Rates of change with respect to time
Mathematics Extension 1 - HSC
Rational function inequalities
Mathematics Extension 1 - HSC
Reciprocal functions
Mathematics Extension 1 - HSC
Related rates of change
Mathematics Extension 1 - HSC
Relationship between roots and coefficients
Mathematics Extension 1 - HSC
Scalar product of vectors
Mathematics Extension 1 - HSC
Simple trigonometric equations
Mathematics Extension 1 - HSC
Solving differential equations of the form dy/dx = f(x)
Mathematics Extension 1 - HSC
Solving differential equations of the form dy/dx = g(y)
Mathematics Extension 1 - HSC
Solving differential equations using separation of variables
Mathematics Extension 1 - HSC
Solving equations using angle formulae
Mathematics Extension 1 - HSC
Solving quadratic trigonometric equations
Mathematics Extension 1 - HSC
Solving trigonometric equations using the auxiliary angle method
Mathematics Extension 1 - HSC
Square root functions
Mathematics Extension 1 - HSC
Sum and difference of two angles
Mathematics Extension 1 - HSC
The factor theorem
Mathematics Extension 1 - HSC
Trigonometric equations involving angle formulae
Mathematics Extension 1 - HSC
Trigonometric products as sums or differences
Mathematics Extension 1 - HSC
Using identities to simplify expressions and prove results
Mathematics Extension 1 - HSC
Vectors in component form
Mathematics Extension 1 - HSC
Vectors in geometric proofs
Mathematics Extension 1 - HSC
Vectors in two dimensions
Mathematics Extension 1 - HSC
Velocity and acceleration as rates of change
Mathematics Extension 1 - HSC
Volumes of solids of revolution
Mathematics Extension 1 - HSC