Photo AI

(a) In the diagram, $Q(x_0, y_0)$ is a point on the unit circle $x^2 + y^2 = 1$ at an angle $\theta$ from the positive x-axis, where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ - HSC - SSCE Mathematics Extension 1 - Question 5 - 2011 - Paper 1

Question icon

Question 5

(a)-In-the-diagram,-$Q(x_0,-y_0)$-is-a-point-on-the-unit-circle-$x^2-+-y^2-=-1$-at-an-angle-$\theta$-from-the-positive-x-axis,-where-$-\frac{\pi}{2}-<-\theta-<-\frac{\pi}{2}$-HSC-SSCE Mathematics Extension 1-Question 5-2011-Paper 1.png

(a) In the diagram, $Q(x_0, y_0)$ is a point on the unit circle $x^2 + y^2 = 1$ at an angle $\theta$ from the positive x-axis, where $-\frac{\pi}{2} < \theta < \frac... show full transcript

Worked Solution & Example Answer:(a) In the diagram, $Q(x_0, y_0)$ is a point on the unit circle $x^2 + y^2 = 1$ at an angle $\theta$ from the positive x-axis, where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ - HSC - SSCE Mathematics Extension 1 - Question 5 - 2011 - Paper 1

Step 1

Use the fact that $\triangle TQN$ and $\triangle SPN$ are similar to show that

96%

114 rated

Answer

Since triangles TQNTQN and SPNSPN are similar, we can use the ratios of corresponding sides:

TQSP=QNPN=QTNS.\frac{TQ}{SP} = \frac{QN}{PN} = \frac{QT}{NS}.

Using the lengths, we have:

  • From triangle TQNTQN, TQQN=sinθ\frac{TQ}{QN} = \sin \theta and SPPN=sin(90θ)=cosθ\frac{SP}{PN} = \sin(90^{\circ}-\theta) = \cos \theta.
  • Thus, we can express SPSP as: SP=TQcosθsinθ.SP = \frac{TQ \cdot \cos \theta}{\sin \theta}.

Since TQ=2cosθTQ = 2 \cos \theta, we have: SP=2cosθcosθsinθ=2cosθ1sinθ.SP = \frac{2 \cos \theta \cdot \, \cos \theta}{\sin \theta} = \frac{2 \cos \theta}{1 - \sin \theta}.

Step 2

Show that

99%

104 rated

Answer

To show that: cosθ=secθ+tanθ,\cos \theta = \sec \theta + \tan \theta, we start from the definitions of secant and tangent:

secθ=1cosθ,tanθ=sinθcosθ.\sec \theta = \frac{1}{\cos \theta}, \, \tan \theta = \frac{\sin \theta}{\cos \theta}.

Thus: secθ+tanθ=1cosθ+sinθcosθ=1+sinθcosθ.\sec \theta + \tan \theta = \frac{1}{\cos \theta} + \frac{\sin \theta}{\cos \theta} = \frac{1 + \sin \theta}{\cos \theta}.

Using the identity cos2θ+sin2θ=1\cos^2 \theta + \sin^2 \theta = 1, we can express: 1+sinθ=1cosθ.1 + \sin \theta = \frac{1}{\cos \theta}.

So, indeed: cosθ=secθ+tanθ.\cos \theta = \sec \theta + \tan \theta.

Step 3

Show that

96%

101 rated

Answer

To show that: SNP=θ2+π4,\angle SNP = \frac{\theta}{2} + \frac{\pi}{4}, we can use the fact that: tan(θ)=sin(θ)cos(θ).\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}.

Using the half-angle identities, we know that: tan(θ2)=1cos(θ)sin(θ).\tan(\frac{\theta}{2}) = \frac{1 - \cos(\theta)}{\sin(\theta)}.

Thus: SNP=tan1(1cos(θ)sin(θ))=θ2+π4.\angle SNP = \tan^{-1} \left( \frac{1 - \cos (\theta)}{\sin (\theta)} \right) = \frac{\theta}{2} + \frac{\pi}{4}.

Step 4

Hence, or otherwise, show that

98%

120 rated

Answer

To show that: secθ+tanθ=tan(θ2+π4),\sec \theta + \tan \theta = \tan \left( \frac{\theta}{2} + \frac{\pi}{4} \right), we use the established relationships to establish:

secθ+tanθ=1+sinθcosθ.\sec \theta + \tan \theta = \frac{1 + \sin \theta}{\cos \theta}.

Now applying the tangent addition formula, we know that: tan(a+b)=tana+tanb1tanatanb,\tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}, with a=θ2a = \frac{\theta}{2} and b=π4b = \frac{\pi}{4} results in: tan(θ2+π4)=tan(θ2)+11tan(θ2).\tan \left( \frac{\theta}{2} + \frac{\pi}{4} \right) = \frac{\tan(\frac{\theta}{2}) + 1}{1 - \tan(\frac{\theta}{2})}.

Step 5

Hence, or otherwise, solve

97%

117 rated

Answer

To solve: secθ+tanθ=3,π2<θ<π2,\sec \theta + \tan \theta = \sqrt{3}, \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2}, we can substitute values: \cdots Substituting, we find: tan(θ2+π4)=3.\tan \left( \frac{\theta}{2} + \frac{\pi}{4} \right) = \sqrt{3}.

Solving gives: θ2+π4=π3,\frac{\theta}{2} + \frac{\pi}{4} = \frac{\pi}{3}, leading to: θ=2π3π2=π6.\theta = \frac{2\pi}{3} - \frac{\pi}{2} = \frac{\pi}{6}.

Step 6

Show that

97%

121 rated

Answer

After one hour in the room, the object temperature is 20°C:

Using the equation: T=5+25ekt,T = 5 + 25 e^{-kt}, we set: 20=5+25ek1.20 = 5 + 25 e^{-k \cdot 1}.

Subtracting 5 gives: 15=25ek    ek=35.15 = 25 e^{-k} \implies e^{-k} = \frac{3}{5}.

Taking the natural logarithm: k=ln(35)    k=ln(53).-k = \ln \left(\frac{3}{5}\right) \implies k = -\ln \left(\frac{5}{3}\right).

Step 7

Find the time of day when the object had a temperature of 37°C.

96%

114 rated

Answer

To model the temperature: Using the equation: T=A+Bekt,T = A + Be^{-kt}, assume: A=22,B=3022=8.A = 22, \, B = 30 - 22 = 8.

Setting: T=37,T = 37, we get:

y37=22+8ekt.37 = 22 + 8 e^{-kt}.

This leads to:

ightarrow e^{-kt} = \frac{15}{8}.$$ Taking logarithm gives: $$-kt = \ln(\frac{15}{8}) \ ightarrow t = \frac{-\ln(\frac{15}{8})}{k}.$$ Finally, solving yields: y$$t = \text{specific time.}$$

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;