Photo AI

Given the two non-zero vectors $\mathbf{a}$ and $\mathbf{b}$, let $\mathbf{c}$ be the projection of $\mathbf{a}$ onto $\mathbf{b}$ - HSC - SSCE Mathematics Extension 1 - Question 6 - 2023 - Paper 1

Question icon

Question 6

Given-the-two-non-zero-vectors-$\mathbf{a}$-and-$\mathbf{b}$,-let-$\mathbf{c}$-be-the-projection-of-$\mathbf{a}$-onto-$\mathbf{b}$-HSC-SSCE Mathematics Extension 1-Question 6-2023-Paper 1.png

Given the two non-zero vectors $\mathbf{a}$ and $\mathbf{b}$, let $\mathbf{c}$ be the projection of $\mathbf{a}$ onto $\mathbf{b}$. What is the projection of $10\m... show full transcript

Worked Solution & Example Answer:Given the two non-zero vectors $\mathbf{a}$ and $\mathbf{b}$, let $\mathbf{c}$ be the projection of $\mathbf{a}$ onto $\mathbf{b}$ - HSC - SSCE Mathematics Extension 1 - Question 6 - 2023 - Paper 1

Step 1

What is the projection of $10\mathbf{a}$ onto $2\mathbf{b}$?

96%

114 rated

Answer

To find the projection of one vector onto another, we use the projection formula:

projb(a)=abbbb\text{proj}_{\mathbf{b}}(\mathbf{a}) = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b}.

Here we need to find the projection of 10a10\mathbf{a} onto 2b2\mathbf{b}:

  1. Substitute into the projection formula: proj2b(10a)=10a(2b)(2b)(2b)(2b)\text{proj}_{2\mathbf{b}}(10\mathbf{a}) = \frac{10\mathbf{a} \cdot (2\mathbf{b})}{(2\mathbf{b}) \cdot (2\mathbf{b})} (2\mathbf{b})

  2. Simplify the numerator: =20(ab)4(bb)(2b)= \frac{20(\mathbf{a} \cdot \mathbf{b})}{4(\mathbf{b} \cdot \mathbf{b})} (2\mathbf{b}) =5(ab)(bb)(2b)= \frac{5(\mathbf{a} \cdot \mathbf{b})}{(\mathbf{b} \cdot \mathbf{b})} (2\mathbf{b})

Thus, the projection of 10a10\mathbf{a} onto 2b2\mathbf{b} results in:

proj2b(10a)=10projb(a)\text{proj}_{2\mathbf{b}}(10\mathbf{a}) = 10\text{proj}_{\mathbf{b}}(\mathbf{a})

Given that the projection of a\mathbf{a} onto b\mathbf{b} is c\mathbf{c}, we have: 10c10\mathbf{c}. Therefore, the final answer is:

Answer: 10cc.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;