Photo AI

The projection of the vector \(egin{pmatrix} 6 \\ 7 \end{pmatrix}\) onto the line \(y = 2x\) is \(egin{pmatrix} 4 \\ 8 \end{pmatrix}\) - HSC - SSCE Mathematics Extension 1 - Question 9 - 2020 - Paper 1

Question icon

Question 9

The-projection-of-the-vector-\(egin{pmatrix}-6-\\-7-\end{pmatrix}\)-onto-the-line-\(y-=-2x\)-is-\(egin{pmatrix}-4-\\-8-\end{pmatrix}\)-HSC-SSCE Mathematics Extension 1-Question 9-2020-Paper 1.png

The projection of the vector \(egin{pmatrix} 6 \\ 7 \end{pmatrix}\) onto the line \(y = 2x\) is \(egin{pmatrix} 4 \\ 8 \end{pmatrix}\). The point (6, 7) is reflec... show full transcript

Worked Solution & Example Answer:The projection of the vector \(egin{pmatrix} 6 \\ 7 \end{pmatrix}\) onto the line \(y = 2x\) is \(egin{pmatrix} 4 \\ 8 \end{pmatrix}\) - HSC - SSCE Mathematics Extension 1 - Question 9 - 2020 - Paper 1

Step 1

The projection of the vector onto the line

96%

114 rated

Answer

To find the projection of the vector (egin{pmatrix} 6 \ 7 \end{pmatrix}) onto the line (y = 2x), we first need the direction vector of the line. The slope is 2, so a direction vector can be taken as (\begin{pmatrix} 1 \ 2 \end{pmatrix}).

Next, we calculate the projection using the formula:

projb(a)=abbbb\text{proj}_{\mathbf{b}}(\mathbf{a}) = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b}

Where (\mathbf{a} = \begin{pmatrix} 6 \ 7 \end{pmatrix}) and (\mathbf{b} = \begin{pmatrix} 1 \ 2 \end{pmatrix}$$.

Calculating the dot products:

ab=61+72=6+14=20\mathbf{a} \cdot \mathbf{b} = 6 \cdot 1 + 7 \cdot 2 = 6 + 14 = 20

bb=12+22=1+4=5\mathbf{b} \cdot \mathbf{b} = 1^2 + 2^2 = 1 + 4 = 5

So, the projection is:

projb(a)=205(12)=4(12)=(48)\text{proj}_{\mathbf{b}}(\mathbf{a}) = \frac{20}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix}.

Step 2

Reflecting the point (6, 7)

99%

104 rated

Answer

To find the reflection of the point (6, 7) across the line (y = 2x), we first need the intersection of the line and the perpendicular from the point to the line. The slope of the line is 2, so the perpendicular slope will be (-\frac{1}{2}).

The equation of the line through (6, 7) with slope (-\frac{1}{2}) is:

y7=12(x6)y - 7 = -\frac{1}{2}(x - 6)

The line equation simplifies to:

y=12x+10y = -\frac{1}{2}x + 10.

To find the intersection, we set the equations equal to each other:

2x=12x+1052x=10x=4y=2(4)=82x = -\frac{1}{2}x + 10 \Rightarrow \frac{5}{2}x = 10 \Rightarrow x = 4\,\, y = 2(4) = 8.

Now we have the intersection point (4, 8). The reflection point A can be found by using:

A=2Intersection Point(6,7)A = 2 \cdot \text{Intersection Point} - (6, 7)

Calculating:

A=2(48)(67)=(816)(67)=(29)A = 2 \begin{pmatrix} 4 \\ 8 \end{pmatrix} - \begin{pmatrix} 6 \\ 7 \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \end{pmatrix} - \begin{pmatrix} 6 \\ 7 \end{pmatrix} = \begin{pmatrix} 2 \\ 9 \end{pmatrix}.

Thus, the position vector of point A is (\begin{pmatrix} 2 \ 9 \end{pmatrix}).

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;