Photo AI
Question 11
Find \( \int \sin x \cdot x \,dx \). (b) Calculate the size of the acute angle between the lines \( y = 2x + 5 \) and \( y = 4 - 3x \). (c) Solve the inequality \(... show full transcript
Step 1
Answer
To solve ( \int \sin x \cdot x ,dx ), we will use integration by parts. Let:
[ u = x , \Rightarrow , du = dx ] [ dv = \sin x ,dx , \Rightarrow , v = -\cos x ]
Applying integration by parts, we have:
[ \int u , dv = uv - \int v , du ] [ = x(-\cos x) - \int (-\cos x) , dx ] [ = -x\cos x + \int \cos x , dx ] [ = -x\cos x + \sin x + C ]
Thus, the final result is: [ \int \sin x , x ,dx = -x\cos x + \sin x + C ]
Step 2
Answer
To find the angle ( \theta ) between two lines with slopes ( m_1 ) and ( m_2 ), we use the formula:
[ \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| ]
For the lines given, we identify the slopes:
Now substituting: [ \tan \theta = \left| \frac{2 - (-3)}{1 + 2 \cdot (-3)} \right| = \left| \frac{5}{1 - 6} \right| = \left| \frac{5}{-5} \right| = 1 ]
Thus, ( \theta = \tan^{-1}(1) = \frac{\pi}{4} ). We convert this to degrees: [ \theta = 45^\circ ]
Step 3
Answer
To solve ( \frac{4}{x + 3} \geq 1 ), we start by isolating ( x ):
Multiply both sides by ( x + 3 ) (noting that ( x + 3 > 0 ) for the inequality to hold): [ 4 \geq x + 3 ]
Rearranging gives: [ x \leq 1 ]
Next, we find when ( x + 3 ) is positive: [ x + 3 > 0 \Rightarrow x > -3 ]
Combining both conditions, we have: [ -3 < x \leq 1 ]
Step 4
Answer
To write ( 5 , ext{cos} , x - 12 , ext{sin} , x ) in the form ( A \cos(x + \alpha) ), we first find ( A ) and ( \alpha ):
Thus: [ 5 , \cos , x - 12 , \sin , x = 13 \cos(x + \alpha) ]
Step 5
Answer
Using the substitution ( u = 2x - 1 \Rightarrow x = \frac{u + 1}{2} , \Rightarrow dx = \frac{1}{2} du ):
Now substituting: [ \int_{1}^{3} \frac{\frac{u + 1}{2}}{u^{3}} \cdot \frac{1}{2} , du = \frac{1}{4} \int_{1}^{3} \frac{u + 1}{u^{3}} , du ]
This simplifies to: [ = \frac{1}{4} \left( \int_{1}^{3} u^{-2} , du + \int_{1}^{3} u^{-3} , du \right) ]
Calculating both integrals gives: [ \int u^{-2} , du = -u^{-1} igg|{1}^{3} = -\left(\frac{1}{3} - 1\right) = \frac{2}{3} ] [ \int u^{-3} , du = -\frac{1}{2}u^{-2} igg|{1}^{3} = -\frac{1}{2}\left(\frac{1}{9} - 1\right) = \frac{4}{18} = \frac{2}{9} ]
Combining these results gives: [ \text{Final result} = \frac{1}{4} \left( \frac{2}{3} + \frac{2}{9} \right) ]
Step 6
Answer
Since ( A(x) = x - 3 ) is a factor of ( P(x) ), we can substitute ( x = 3 ) into ( P(x) ) and set it to zero:
[ P(3) = (3)^{3} - k(3)^{2} + 5(3) + 12 = 0 ] [ 27 - 9k + 15 + 12 = 0 \Rightarrow 54 - 9k = 0 \Rightarrow 9k = 54 \Rightarrow k = 6. ]
Step 7
Answer
With ( k = 6 ), the polynomial becomes: [ P(x) = x^{3} - 6x^{2} + 5x + 12. ]
Using synthetic division with the root ( x = 3 ):
Therefore, the zeros are: ( x = 3, x = 4, x = -1. )
Report Improved Results
Recommend to friends
Students Supported
Questions answered