Photo AI

For the vectors $ extbf{u} = extbf{i} - extbf{j}$ and $ extbf{v} = 2 extbf{i} + extbf{j}$, evaluate each of the following: a) (i) $ extbf{u} + 3 extbf{v}$ (ii) $ extbf{u} ullet extbf{v}$ b) Find the exact value of \( \int_{0}^{1} \frac{x}{\sqrt{x^{2}+4}} \, dx \) using the substitution \( u = x^{2}+4 \) - HSC - SSCE Mathematics Extension 1 - Question 11 - 2022 - Paper 1

Question icon

Question 11

For-the-vectors-$-extbf{u}-=--extbf{i}----extbf{j}$-and-$-extbf{v}-=-2-extbf{i}-+--extbf{j}$,-evaluate-each-of-the-following:--a)-(i)-$-extbf{u}-+-3-extbf{v}$-(ii)-$-extbf{u}-ullet--extbf{v}$--b)-Find-the-exact-value-of-\(-\int_{0}^{1}-\frac{x}{\sqrt{x^{2}+4}}-\,-dx-\)-using-the-substitution-\(-u-=-x^{2}+4-\)-HSC-SSCE Mathematics Extension 1-Question 11-2022-Paper 1.png

For the vectors $ extbf{u} = extbf{i} - extbf{j}$ and $ extbf{v} = 2 extbf{i} + extbf{j}$, evaluate each of the following: a) (i) $ extbf{u} + 3 extbf{v}$ (ii) $... show full transcript

Worked Solution & Example Answer:For the vectors $ extbf{u} = extbf{i} - extbf{j}$ and $ extbf{v} = 2 extbf{i} + extbf{j}$, evaluate each of the following: a) (i) $ extbf{u} + 3 extbf{v}$ (ii) $ extbf{u} ullet extbf{v}$ b) Find the exact value of \( \int_{0}^{1} \frac{x}{\sqrt{x^{2}+4}} \, dx \) using the substitution \( u = x^{2}+4 \) - HSC - SSCE Mathematics Extension 1 - Question 11 - 2022 - Paper 1

Step 1

Evaluate $\textbf{u} + 3\textbf{v}$

96%

114 rated

Answer

u+3v=(ij)+3(2i+j)=ij+6i+3j=7i+2j\textbf{u} + 3\textbf{v} = (\textbf{i} - \textbf{j}) + 3(2\textbf{i} + \textbf{j}) = \textbf{i} - \textbf{j} + 6\textbf{i} + 3\textbf{j} = 7\textbf{i} + 2\textbf{j}.

Step 2

Evaluate $\textbf{u} \bullet \textbf{v}$

99%

104 rated

Answer

uv=(ij)(2i+j)=12+(1)1=1.\textbf{u} \bullet \textbf{v} = (\textbf{i} - \textbf{j}) \bullet (2\textbf{i} + \textbf{j}) = 1 \cdot 2 + (-1) \cdot 1 = 1.

Step 3

Find the exact value of $\int_{0}^{1} \frac{x}{\sqrt{x^{2}+4}} \, dx$

96%

101 rated

Answer

Let u=x2+4u = x^{2} + 4, then du=2xdxdu = 2x \, dx. Changing the limits when x=0x=0, u=4u=4 and when x=1x=1, u=5u=5. Hence,

01xx2+4dx=4512udu=[u]45=52.\int_{0}^{1} \frac{x}{\sqrt{x^{2}+4}} \, dx = \int_{4}^{5} \frac{1}{2\sqrt{u}} \, du = \left[\sqrt{u}\right]_{4}^{5} = \sqrt{5} - 2.

Step 4

Find the coefficients of $x^{2}$ and $x^{3}$ in the expansion of $\left( 1 - \frac{x}{2} \right)^{8}$

98%

120 rated

Answer

Using the binomial expansion, we have:

(1x2)8=k=08(8k)(1)k(x2)k.\left( 1 - \frac{x}{2} \right)^{8} = \sum_{k=0}^{8} \binom{8}{k} (-1)^{k} \left(\frac{x}{2}\right)^{k}. For x2x^{2}, use k=2k=2: (82)(12)2=2814=7.\binom{8}{2} \left( -\frac{1}{2} \right)^{2} = 28 \cdot \frac{1}{4} = 7. For x3x^{3}, use k=3k=3: (83)(12)3=5618=7.\binom{8}{3} \left( -\frac{1}{2} \right)^{3} = 56 \cdot -\frac{1}{8} = -7.

Step 5

Determine if the vectors are perpendicular.

97%

117 rated

Answer

Given the vectors u=(a22)\textbf{u} = \begin{pmatrix} \frac{a}{2} \\ 2 \end{pmatrix} and y=(a74a11)\textbf{y} = \begin{pmatrix} \frac{a-7}{4a-1} \\ 1 \end{pmatrix} are perpendicular if uy=0\textbf{u} \bullet \textbf{y} = 0:

a2a74a1+21=0\frac{a}{2} \cdot \frac{a-7}{4a-1} + 2 \cdot 1 = 0 Solving this leads to the quadratic in terms of aa, which gives possible values of a=2a = -2 or a=7.a = 7.

Step 6

Express $\sqrt{3}\sin(x) - 3\cos(x)$ in the form $R\sin(x + \alpha)$

97%

121 rated

Answer

To express this form, let R=32+(3)2=3+9=23R = \sqrt{\sqrt{3}^{2} + (-3)^{2}} = \sqrt{3 + 9} = 2\sqrt{3}. Now let tan(α)=33\tan(\alpha) = \frac{-3}{\sqrt{3}}. From here, we find: α=tan1(3)=5π3.\alpha = \tan^{-1}\left(-\sqrt{3}\right) = \frac{5\pi}{3}.

Step 7

Solve $\frac{x}{2 - x} \geq 5$

96%

114 rated

Answer

Cross-multiplying provides: x105x\Rightarrow x \geq 10 - 5x 6x10\Rightarrow 6x \geq 10', leading to x53x \geq \frac{5}{3}. We then examine the critical points to find valid solutions.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;