What is the remainder when $P(x) = -x^3 - 2x^2 - 3x + 8$ is divided by $x + 2$? - HSC - SSCE Mathematics Extension 1 - Question 3 - 2021 - Paper 1
Question 3
What is the remainder when $P(x) = -x^3 - 2x^2 - 3x + 8$ is divided by $x + 2$?
Worked Solution & Example Answer:What is the remainder when $P(x) = -x^3 - 2x^2 - 3x + 8$ is divided by $x + 2$? - HSC - SSCE Mathematics Extension 1 - Question 3 - 2021 - Paper 1
Step 1
Evaluate the polynomial at $x = -2$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the remainder when dividing by x+2, we can use the Remainder Theorem. According to the theorem, the remainder of the polynomial P(x) when divided by x−a is simply P(a). Here, we want to find P(−2):