Photo AI

Given that $$ar{OP} = \begin{pmatrix}-3 \\ 1\end{pmatrix}$$ and $$\bar{OQ} = \begin{pmatrix}2 \\ 5\end{pmatrix}$$, what is $$\bar{PQ}$$? - HSC - SSCE Mathematics Extension 1 - Question 1 - 2021 - Paper 1

Question icon

Question 1

Given-that--$$ar{OP}-=-\begin{pmatrix}-3-\\-1\end{pmatrix}$$-and-$$\bar{OQ}-=-\begin{pmatrix}2-\\-5\end{pmatrix}$$,-what-is-$$\bar{PQ}$$?-HSC-SSCE Mathematics Extension 1-Question 1-2021-Paper 1.png

Given that $$ar{OP} = \begin{pmatrix}-3 \\ 1\end{pmatrix}$$ and $$\bar{OQ} = \begin{pmatrix}2 \\ 5\end{pmatrix}$$, what is $$\bar{PQ}$$?

Worked Solution & Example Answer:Given that $$ar{OP} = \begin{pmatrix}-3 \\ 1\end{pmatrix}$$ and $$\bar{OQ} = \begin{pmatrix}2 \\ 5\end{pmatrix}$$, what is $$\bar{PQ}$$? - HSC - SSCE Mathematics Extension 1 - Question 1 - 2021 - Paper 1

Step 1

Calculate the vector $$\bar{PQ}$$

96%

114 rated

Answer

To find the vector PQˉ\bar{PQ}, we use the formula:

PQˉ=OQˉOPˉ\bar{PQ} = \bar{OQ} - \bar{OP}.\

Substituting the values, we calculate:

PQˉ=(25)(31)\bar{PQ} = \begin{pmatrix}2 \\ 5\end{pmatrix} - \begin{pmatrix}-3 \\ 1\end{pmatrix}

Now, we perform the subtraction:

PQˉ=(2(3)51)=(2+351)=(54).\bar{PQ} = \begin{pmatrix}2 - (-3) \\ 5 - 1\end{pmatrix} = \begin{pmatrix}2 + 3 \\ 5 - 1\end{pmatrix} = \begin{pmatrix}5 \\ 4\end{pmatrix}.

Thus, the vector PQˉ\bar{PQ} is (54)\begin{pmatrix}5 \\ 4\end{pmatrix}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;