Given that
\( \overrightarrow{OP} = \begin{pmatrix} -3 \\ 1 \end{pmatrix} \) and \( \overrightarrow{OQ} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \), what is \( \overrightarrow{PQ} \? - HSC - SSCE Mathematics Extension 1 - Question 1 - 2021 - Paper 1
Question 1
Given that
\( \overrightarrow{OP} = \begin{pmatrix} -3 \\ 1 \end{pmatrix} \) and \( \overrightarrow{OQ} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \), what is \( \overr... show full transcript
Worked Solution & Example Answer:Given that
\( \overrightarrow{OP} = \begin{pmatrix} -3 \\ 1 \end{pmatrix} \) and \( \overrightarrow{OQ} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \), what is \( \overrightarrow{PQ} \? - HSC - SSCE Mathematics Extension 1 - Question 1 - 2021 - Paper 1
Step 1
Calculate \( \overrightarrow{PQ} \)
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find ( \overrightarrow{PQ} ), we use the formula:
PQ=OQ−OP
Substituting the values we have:
PQ=(25)−(−31)
Calculating the difference:
PQ=(2−(−3)5−1)=(2+35−1)=(54)
Thus, ( \overrightarrow{PQ} = \begin{pmatrix} 5 \ 4 \end{pmatrix} ). This corresponds to option C.