Photo AI

For the vectors $\mathbf{u} = \mathbf{i} - \mathbf{j}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j}$, evaluate each of the following - HSC - SSCE Mathematics Extension 1 - Question 11 - 2022 - Paper 1

Question icon

Question 11

For-the-vectors-$\mathbf{u}-=-\mathbf{i}---\mathbf{j}$-and-$\mathbf{v}-=-2\mathbf{i}-+-\mathbf{j}$,-evaluate-each-of-the-following-HSC-SSCE Mathematics Extension 1-Question 11-2022-Paper 1.png

For the vectors $\mathbf{u} = \mathbf{i} - \mathbf{j}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j}$, evaluate each of the following. (i) $\mathbf{u} + 3\mathbf{v}$ ... show full transcript

Worked Solution & Example Answer:For the vectors $\mathbf{u} = \mathbf{i} - \mathbf{j}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j}$, evaluate each of the following - HSC - SSCE Mathematics Extension 1 - Question 11 - 2022 - Paper 1

Step 1

Evaluate $\mathbf{u} + 3\mathbf{v}$

96%

114 rated

Answer

To evaluate u+3v\mathbf{u} + 3\mathbf{v}:

  1. Substitute the vector values: u+3v=(ij)+3(2i+j)\mathbf{u} + 3\mathbf{v} = (\mathbf{i} - \mathbf{j}) + 3(2\mathbf{i} + \mathbf{j})

  2. Distribute the 33: =ij+6i+3j= \mathbf{i} - \mathbf{j} + 6\mathbf{i} + 3\mathbf{j}

  3. Combine like terms: =7i+2j= 7\mathbf{i} + 2\mathbf{j}

Step 2

Evaluate $\mathbf{u} \cdot \mathbf{v}$

99%

104 rated

Answer

To evaluate the dot product uv\mathbf{u} \cdot \mathbf{v}:

  1. Compute: uv=(ij)(2i+j)\mathbf{u} \cdot \mathbf{v} = (\mathbf{i} - \mathbf{j}) \cdot (2\mathbf{i} + \mathbf{j})

  2. Apply the dot product: =12+(1)1=21=1= 1 \cdot 2 + (-1) \cdot 1 = 2 - 1 = 1

Step 3

Find the exact value of $\int_{0}^{1} \frac{x}{\sqrt{x^{2}+4}} dx$

96%

101 rated

Answer

To solve this integral:

  1. Make the substitution u=x2+4u = x^{2} + 4, then du=2xdxdu = 2x \, dx.

  2. Change limits:

    • When x=0x=0, u=4u=4.
    • When x=1x=1, u=5u=5.
  3. Update the integral: 4512udu\int_{4}^{5} \frac{1}{2\sqrt{u}} du

  4. Integrate: =12[2u]45= \frac{1}{2} \left[ 2\sqrt{u} \right]_{4}^{5}

  5. Evaluate: =[52]= \left[ \sqrt{5} - 2 \right]

Step 4

Find the coefficients of $x^{2}$ and $x^{3}$ in the expansion of $\left(1 - \frac{x}{2}\right)^{8}$

98%

120 rated

Answer

Using the binomial theorem for the expansion:

  1. The general term in the expansion: Tk=(nk)ankbkT_k = \binom{n}{k} a^{n-k} b^k where a=1a = 1, b=x2b = -\frac{x}{2}, and n=8n=8.

  2. For x2x^{2} (where k=2k=2): T2=(82)(x2)2=(82)x24=2814=7T_2 = \binom{8}{2} \left(-\frac{x}{2}\right)^{2} = \binom{8}{2} \frac{x^{2}}{4} = 28 \cdot \frac{1}{4} = 7

  3. For x3x^{3} (where k=3k=3): T3=(83)(x2)3=(83)x38=5618=7T_3 = \binom{8}{3} \left(-\frac{x}{2}\right)^{3} = \binom{8}{3} \frac{-x^{3}}{8} = -56 \cdot \frac{1}{8} = -7

Step 5

The vectors $\mathbf{u} = \begin{pmatrix} \frac{a}{2} \\ 2 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} \frac{a - 7}{4a - 1} \end{pmatrix}$ are perpendicular. What are the possible values of $a$?

97%

117 rated

Answer

To find aa where the vectors are perpendicular:

  1. The condition is uv=0\mathbf{u} \cdot \mathbf{v} = 0: (a2)(a74a1)+(2)0=0\left(\frac{a}{2}\right)\left(\frac{a - 7}{4a - 1}\right) + (2)\cdot 0 = 0

  2. Solve the equation: a(a7)=0a=0 or a=7 a(a - 7) = 0 \Rightarrow a = 0 \ \, \text{or} \ a = 7

Step 6

Express $\sqrt{3} \sin(x) - 3\cos(x)$ in the form $R \sin(x + \alpha)$

97%

121 rated

Answer

To express in the desired form:

  1. Identify R=a2+b2R = \sqrt{a^2 + b^2}, where a=3a = \sqrt{3} and b=3b = -3: R=32+(3)2=9+3=23R = \sqrt{3^{2} + (-3)^{2}} = \sqrt{9 + 3} = 2\sqrt{3}

  2. Find α\alpha using: tanα=ba=33=3\tan \alpha = \frac{b}{a} = \frac{-3}{\sqrt{3}} = -\sqrt{3}

  3. Determine α\alpha in the context of the unit circle: α=π3\alpha = -\frac{\pi}{3}

  4. Therefore: 3sin(x)3cos(x)=23sin(xπ3)\sqrt{3} \sin(x) - 3 \cos(x) = 2\sqrt{3} \sin\left(x - \frac{\pi}{3}\right)

Step 7

Solve $\frac{x}{2 - x} \geq 5$

96%

114 rated

Answer

To solve the inequality:

  1. Rewrite it: x5(2x)x \geq 5(2 - x)

  2. Expand and simplify: x105xx \geq 10 - 5x 6x10x536x \geq 10 \Rightarrow x \geq \frac{5}{3}

  3. Consider the critical point x=2x = 2 (where the denominator is zero):

    • Test intervals around x=2x = 2 to see where the expression holds true to find: x2 and x53x \leq 2 \ \, \text{and} \ x \geq \frac{5}{3}

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;