Photo AI

The projection of the vector \( \begin{pmatrix} 6 \\ 7 \end{pmatrix} \) onto the line \( y = 2x \) is \( \begin{pmatrix} 4 \\ 8 \end{pmatrix} \) - HSC - SSCE Mathematics Extension 1 - Question 9 - 2020 - Paper 1

Question icon

Question 9

The-projection-of-the-vector-\(-\begin{pmatrix}-6-\\-7-\end{pmatrix}-\)-onto-the-line-\(-y-=-2x-\)-is-\(-\begin{pmatrix}-4-\\-8-\end{pmatrix}-\)-HSC-SSCE Mathematics Extension 1-Question 9-2020-Paper 1.png

The projection of the vector \( \begin{pmatrix} 6 \\ 7 \end{pmatrix} \) onto the line \( y = 2x \) is \( \begin{pmatrix} 4 \\ 8 \end{pmatrix} \). The point (6, 7) i... show full transcript

Worked Solution & Example Answer:The projection of the vector \( \begin{pmatrix} 6 \\ 7 \end{pmatrix} \) onto the line \( y = 2x \) is \( \begin{pmatrix} 4 \\ 8 \end{pmatrix} \) - HSC - SSCE Mathematics Extension 1 - Question 9 - 2020 - Paper 1

Step 1

Find the slope and normal vector of the line

96%

114 rated

Answer

The line ( y = 2x ) has a slope of 2, which means the normal vector to the line can be represented as ( \mathbf{n} = \begin{pmatrix} 1 \ -2 \end{pmatrix} ).

Step 2

Calculate the projection of the vector onto the line

99%

104 rated

Answer

To find the projection of the vector ( \mathbf{v} = \begin{pmatrix} 6 \ 7 \end{pmatrix} ) onto the line, we can use the formula: [ \text{proj}{\mathbf{n}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n} ] First, calculate the dot products: [ \mathbf{v} \cdot \mathbf{n} = 6 \cdot 1 + 7 \cdot (-2) = 6 - 14 = -8 ] [ \mathbf{n} \cdot \mathbf{n} = 1 \cdot 1 + (-2) \cdot (-2) = 1 + 4 = 5 ] Therefore, [ \text{proj}{\mathbf{n}} \mathbf{v} = \frac{-8}{5} \begin{pmatrix} 1 \ -2 \end{pmatrix} = \begin{pmatrix} -\frac{8}{5} \ \frac{16}{5} \end{pmatrix} ]

Step 3

Find the coordinates of point A

96%

101 rated

Answer

To find the reflection point A, we first find the coordinates of the foot of the perpendicular, which is given by: [ \mathbf{p} = \begin{pmatrix} 6 \ 7 \end{pmatrix} + \text{proj}_{\mathbf{n}} \mathbf{v} = \begin{pmatrix} 6 \ 7 \end{pmatrix} + \begin{pmatrix} -\frac{8}{5} \ \frac{16}{5} \end{pmatrix} = \begin{pmatrix} 6 - \frac{8}{5} \ 7 + \frac{16}{5} \end{pmatrix} = \begin{pmatrix} \frac{30}{5} - \frac{8}{5} \ \frac{35}{5} + \frac{16}{5} \end{pmatrix} = \begin{pmatrix} \frac{22}{5} \ \frac{51}{5} \end{pmatrix} ] The coordinates of point A will be the reflection across the line, thus: [ A = \begin{pmatrix} 2 \ 9 \end{pmatrix} ]

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;