Photo AI

The base of a solid is the region enclosed by the parabola $x = 1 - y^2$ and the $y$-axis - HSC - SSCE Mathematics Extension 2 - Question 12 - 2018 - Paper 1

Question icon

Question 12

The-base-of-a-solid-is-the-region-enclosed-by-the-parabola-$x-=-1---y^2$-and-the-$y$-axis-HSC-SSCE Mathematics Extension 2-Question 12-2018-Paper 1.png

The base of a solid is the region enclosed by the parabola $x = 1 - y^2$ and the $y$-axis. Each cross-section perpendicular to the $y$-axis is an equilateral triangl... show full transcript

Worked Solution & Example Answer:The base of a solid is the region enclosed by the parabola $x = 1 - y^2$ and the $y$-axis - HSC - SSCE Mathematics Extension 2 - Question 12 - 2018 - Paper 1

Step 1

Find the volume of the solid

96%

114 rated

Answer

The volume of the solid can be calculated using the formula for the volume of solids of revolution. The area of the equilateral triangle cross-section can be expressed in terms of the height, which is determined by the parabola's equation.

  1. The length of the side of the equilateral triangle at height yy is given by the distance between the parabola and the yy-axis:

    x=1y2.x = 1 - y^2. Thus, the side length s=1y2s = 1 - y^2.

  2. The area AA of the equilateral triangle is given by:

    A=s234=(1y2)234.A = \frac{s^2 \sqrt{3}}{4} = \frac{(1 - y^2)^2 \sqrt{3}}{4}.

  3. To find the volume, we integrate the area with respect to yy from the lower limit y=1y = -1 to the upper limit y=1y = 1:

    V=11Ady=11(1y2)234dy.V = \int_{-1}^{1} A \, dy = \int_{-1}^{1} \frac{(1 - y^2)^2 \sqrt{3}}{4} \, dy.

  4. Calculate the integral:

    V=3411(12y2+y4)dy=34[y23y3+15y5]11=34(223(2)+25(2))=4315.V = \frac{\sqrt{3}}{4} \int_{-1}^{1} (1 - 2y^2 + y^4) \, dy = \frac{\sqrt{3}}{4} \left[ y - \frac{2}{3}y^3 + \frac{1}{5}y^5 \right]_{-1}^{1} = \frac{\sqrt{3}}{4} \left( 2 - \frac{2}{3}(2) + \frac{2}{5}(2) \right) = \frac{4\sqrt{3}}{15}.

Step 2

Use implicit differentiation to show that \( \frac{dy}{dx} = \frac{-2x + y}{x + 2y}. \)

99%

104 rated

Answer

To find ( \frac{dy}{dx} ) using implicit differentiation, we start with the equation:

x2+xy+y2=3.x^2 + xy + y^2 = 3.

Differentiating both sides with respect to xx gives:

2x+y+xdydx+2ydydx=0.2x + y + x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0.

Rearranging leads to:

dydx(x+2y)=(2x+y)\frac{dy}{dx}(x + 2y) = - (2x + y)

Thus,

dydx=2x+yx+2y.\frac{dy}{dx} = \frac{-2x + y}{x + 2y}.

Step 3

Hence, or otherwise, find the coordinates of the points on the curve where \( \frac{dy}{dx} = 0. \)

96%

101 rated

Answer

From the expression derived for ( \frac{dy}{dx} ), to find where this equals zero, set the numerator equal to zero:

2x+y=0y=2x.-2x + y = 0 \Rightarrow y = 2x.

Substitute y=2xy = 2x back into the original curve equation:

x2+x(2x)+(2x)2=3x2+2x2+4x2=37x2=3x2=37x=±37.x^2 + x(2x) + (2x)^2 = 3 \Rightarrow x^2 + 2x^2 + 4x^2 = 3 \Rightarrow 7x^2 = 3 \Rightarrow x^2 = \frac{3}{7} \Rightarrow x = \pm \sqrt{\frac{3}{7}}.

Therefore, the points are:

x=37y=237 and x=37y=237.x = \sqrt{\frac{3}{7}} \Rightarrow y = 2\sqrt{\frac{3}{7}} \text{ and } x = -\sqrt{\frac{3}{7}} \Rightarrow y = -2\sqrt{\frac{3}{7}}.

The coordinates are ( \left( \sqrt{\frac{3}{7}}, 2\sqrt{\frac{3}{7}} \right) \text{ and } \left( -\sqrt{\frac{3}{7}}, -2\sqrt{\frac{3}{7}} \right). \

Step 4

Find \( \int \frac{x^2 + 2x}{x^2 + 2x + 5} \, dx. \)

98%

120 rated

Answer

To evaluate the integral:

x2+2xx2+2x+5dx,\int \frac{x^2 + 2x}{x^2 + 2x + 5} \, dx,

we can use polynomial long division or rewrite the integrand:

Rewrite it as:

(15x2+2x+5)dx=1dx51x2+2x+5dx.\int \left( 1 - \frac{5}{x^2 + 2x + 5} \right) \, dx = \int 1 \, dx - 5\int \frac{1}{x^2 + 2x + 5} \, dx.

The first integral evaluates to:

x.x.

For the second integral, complete the square in the denominator:

x2+2x+5=(x+1)2+4.x^2 + 2x + 5 = (x + 1)^2 + 4.

Thus,

( \int \frac{1}{(x + 1)^2 + 4} , dx = \frac{1}{2} \tan^{-1}\left(\frac{x + 1}{2}\right). )

Collecting the results:

=x52tan1(x+12)+C.= x - \frac{5}{2} \tan^{-1} \left( \frac{x + 1}{2} \right) + C.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;