Photo AI

Which of the following is a vector equation of the line joining the points A(4, 2, 5) and B(-2, 2, 1)? - HSC - SSCE Mathematics Extension 2 - Question 3 - 2021 - Paper 1

Question icon

Question 3

Which-of-the-following-is-a-vector-equation-of-the-line-joining-the-points-A(4,-2,-5)-and-B(-2,-2,-1)?-HSC-SSCE Mathematics Extension 2-Question 3-2021-Paper 1.png

Which of the following is a vector equation of the line joining the points A(4, 2, 5) and B(-2, 2, 1)?

Worked Solution & Example Answer:Which of the following is a vector equation of the line joining the points A(4, 2, 5) and B(-2, 2, 1)? - HSC - SSCE Mathematics Extension 2 - Question 3 - 2021 - Paper 1

Step 1

Determine the direction vector from A to B

96%

114 rated

Answer

To find the direction vector, subtract the coordinates of point A from point B: extDirectionvector=BA=(2,2,1)(4,2,5)=(24,22,15)=(6,0,4) ext{Direction vector} = B - A = (-2, 2, 1) - (4, 2, 5) = (-2 - 4, 2 - 2, 1 - 5) = (-6, 0, -4)

Step 2

Formulate the vector equation of the line

99%

104 rated

Answer

The vector equation of the line can be expressed as: extbfr=extbfa+extbfbλ extbf{r} = extbf{a} + extbf{b} \lambda where

  • extbfa extbf{a} is the position vector of point A,
  • extbfb extbf{b} is the direction vector, and
  • extlambda extlambda is a scalar parameter.

Using point A(4, 2, 5) as the position vector: extbfa=(4 2 5) extbf{a} = \begin{pmatrix} 4 \ 2 \ 5 \end{pmatrix} And the direction vector: extbfb=(6 0 4) extbf{b} = \begin{pmatrix} -6 \ 0 \ -4 \end{pmatrix} The vector equation becomes: extbfr=(4 2 5)+λ(6 0 4) extbf{r} = \begin{pmatrix} 4 \ 2 \ 5 \end{pmatrix} + \lambda \begin{pmatrix} -6 \ 0 \ -4 \end{pmatrix}

Step 3

Choose the correct option

96%

101 rated

Answer

From the options provided:

  • A: (4 2 5)+λ(1 2 3)\begin{pmatrix} 4 \ 2 \ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix}
  • B: (4 2 5)+λ(3 0 2)\begin{pmatrix} 4 \ 2 \ 5 \end{pmatrix} + \lambda \begin{pmatrix} 3 \ 0 \ 2 \end{pmatrix}
  • C: (1 2 3)+λ(4 2 5)\begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} + \lambda \begin{pmatrix} 4 \ 2 \ 5 \end{pmatrix}
  • D: (0 2 5)+λ(4 2 2)\begin{pmatrix} 0 \ 2 \ 5 \end{pmatrix} + \lambda \begin{pmatrix} 4 \ 2 \ 2 \end{pmatrix}

The correct answer corresponding to our derived equation is: B

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;