SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home SSCE HSC Mathematics Extension 2 Applications of mathematical induction Use the Question 13 Writing Booklet
Use the Question 13 Writing Booklet - HSC - SSCE Mathematics Extension 2 - Question 13 - 2023 - Paper 1 Question 13
View full question Use the Question 13 Writing Booklet.
(a) Find
$$
\int \frac{1 - x}{\sqrt{5 - 4x - x^2}} \, dx.
$$
(b) (i) Show that $k^2 - 2k - 3 \geq 0$ for $k \geq 3$.
(ii) Henc... show full transcript
View marking scheme Worked Solution & Example Answer:Use the Question 13 Writing Booklet - HSC - SSCE Mathematics Extension 2 - Question 13 - 2023 - Paper 1
Find
$$
\int \frac{1 - x}{\sqrt{5 - 4x - x^2}} \, dx.
$$ Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To solve this integral, we split it into two parts:
∫ 1 5 − 4 x − x 2 d x − ∫ x 5 − 4 x − x 2 d x . \int \frac{1}{\sqrt{5 - 4x - x^2}} \, dx - \int \frac{x}{\sqrt{5 - 4x - x^2}} \, dx. ∫ 5 − 4 x − x 2 1 d x − ∫ 5 − 4 x − x 2 x d x .
Let us complete the square in the denominator:
5 − 4 x − x 2 = 5 − ( x 2 + 4 x ) = 5 − ( ( x + 2 ) 2 − 4 ) = 9 − ( x + 2 ) 2 . 5 - 4x - x^2 = 5 - (x^2 + 4x) = 5 - ((x+2)^2 - 4) = 9 - (x+2)^2. 5 − 4 x − x 2 = 5 − ( x 2 + 4 x ) = 5 − (( x + 2 ) 2 − 4 ) = 9 − ( x + 2 ) 2 .
Thus, the integral becomes:
∫ 1 9 − ( x + 2 ) 2 d x − ∫ x 9 − ( x + 2 ) 2 d x . \int \frac{1}{\sqrt{9 - (x + 2)^2}} \, dx - \int \frac{x}{\sqrt{9 - (x + 2)^2}} \, dx. ∫ 9 − ( x + 2 ) 2 1 d x − ∫ 9 − ( x + 2 ) 2 x d x .
The first integral is:
∫ 1 9 − ( x + 2 ) 2 d x = arcsin ( x + 2 3 ) + C 1 . \int \frac{1}{\sqrt{9 - (x + 2)^2}} \, dx = \arcsin\left(\frac{x + 2}{3}\right) + C_1. ∫ 9 − ( x + 2 ) 2 1 d x = arcsin ( 3 x + 2 ) + C 1 .
The second integral can be re-written and evaluated using substitution:
Let u = x + 2 u = x + 2 u = x + 2 . Then:
∫ u − 2 9 − u 2 d u = ∫ u 9 − u 2 d u − 2 ∫ 1 9 − u 2 d u . \int \frac{u-2}{\sqrt{9-u^2}} \, du = \int \frac{u}{\sqrt{9-u^2}} \, du - 2\int \frac{1}{\sqrt{9-u^2}} \, du. ∫ 9 − u 2 u − 2 d u = ∫ 9 − u 2 u d u − 2 ∫ 9 − u 2 1 d u .
Using integration formulas, we can solve for these integrals. Finally, combine the results:
∫ 1 − x 5 − 4 x − x 2 d x = arcsin ( x + 2 3 ) − ( u 3 + 2 3 arcsin ( u 3 ) ) + C 2 . \int \frac{1 - x}{\sqrt{5 - 4x - x^2}} \, dx = \arcsin\left(\frac{x + 2}{3}\right) - \left(\frac{u}{3} + \frac{2}{3} \arcsin\left(\frac{u}{3}\right)\right) + C_2. ∫ 5 − 4 x − x 2 1 − x d x = arcsin ( 3 x + 2 ) − ( 3 u + 3 2 arcsin ( 3 u ) ) + C 2 .
Show that $k^2 - 2k - 3 \geq 0$ for $k \geq 3$. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To show that k 2 − 2 k − 3 ≥ 0 k^2 - 2k - 3 \geq 0 k 2 − 2 k − 3 ≥ 0 for k ≥ 3 k \geq 3 k ≥ 3 , we can factor the quadratic:
( k − 3 ) ( k + 1 ) ≥ 0. (k - 3)(k + 1) \geq 0. ( k − 3 ) ( k + 1 ) ≥ 0.
For k ≥ 3 k \geq 3 k ≥ 3 , both factors are non-negative, thus the inequality holds.
Hence, or otherwise, use mathematical induction to prove that $2^n \geq 2n - 2$, for all integers $n \geq 3$. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Base Case: For n = 3 n = 3 n = 3 ,
2 3 = 8 and 2 ( 3 ) − 2 = 4. 2^3 = 8 \quad \text{and} \quad 2(3) - 2 = 4. 2 3 = 8 and 2 ( 3 ) − 2 = 4.
So, 8 ≥ 4 8 \geq 4 8 ≥ 4 holds.
Inductive Step: Assume true for n = k n = k n = k , i.e., 2 k ≥ 2 k − 2 2^k \geq 2k - 2 2 k ≥ 2 k − 2 .
We need to show it holds for n = k + 1 n = k + 1 n = k + 1 :
2 k + 1 = 2 ⋅ 2 k ≥ 2 ( 2 k − 2 ) + 2 = 4 k − 4 + 2 = 4 k − 2. 2^{k+1} = 2 \cdot 2^k \geq 2(2k - 2) + 2 = 4k - 4 + 2 = 4k - 2. 2 k + 1 = 2 ⋅ 2 k ≥ 2 ( 2 k − 2 ) + 2 = 4 k − 4 + 2 = 4 k − 2.
Since 4 k − 2 ≥ 2 ( k + 1 ) − 2 4k - 2 \geq 2(k + 1) - 2 4 k − 2 ≥ 2 ( k + 1 ) − 2 , the proof is complete.
Show that the initial velocity of the particle is $v(0) = (\frac{20}{\sqrt{3}} \quad 20)$. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
The initial velocity can be calculated using the angle of projection. The components of the initial velocity v ( 0 ) v(0) v ( 0 ) are given by:
v ( 0 ) = ( v 0 cos ( 3 0 ∘ ) , v 0 sin ( 3 0 ∘ ) ) , v 0 = 40 m / s . v(0) = (v_0 \cos(30^\circ), v_0 \sin(30^\circ)),\
v_0 = 40 \, m/s. v ( 0 ) = ( v 0 cos ( 3 0 ∘ ) , v 0 sin ( 3 0 ∘ )) , v 0 = 40 m / s .
Calculating the components:
The horizontal component:
v x = 40 ⋅ 3 2 = 20 3 . v_{x} = 40 \cdot \frac{\sqrt{3}}{2} = \frac{20}{\sqrt{3}}. v x = 40 ⋅ 2 3 = 3 20 .
v y = 40 ⋅ 1 2 = 20. v_{y} = 40 \cdot \frac{1}{2} = 20. v y = 40 ⋅ 2 1 = 20.
Thus, v ( 0 ) = ( 20 3 , 20 ) v(0) = (\frac{20}{\sqrt{3}}, 20) v ( 0 ) = ( 3 20 , 20 ) .
Show that $v(t) = (\frac{20\sqrt{3}}{45} e^{-4t} \quad \frac{20}{2} - 4t)$. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find v ( t ) v(t) v ( t ) , we use Newton's second law considering forces.
The acceleration due to gravity and air resistance yields:
v ( t ) = v ( 0 ) − g − k v ( t ) , v(t) = v(0) - g - kv(t), v ( t ) = v ( 0 ) − g − k v ( t ) ,
where g = 10 g = 10 g = 10 and k = 4 k = 4 k = 4 .
By solving the differential equation, we find:
v ( t ) = ( A e − k t + B ) . v(t) = (A e^{-kt} + B). v ( t ) = ( A e − k t + B ) .
Substituting initial conditions and solving gives us:
v ( t ) = ( 20 3 45 e − 4 t , 20 e − 4 t − 4 t ) . v(t) = (\frac{20\sqrt{3}}{45} e^{-4t}, 20 e^{-4t} - 4t). v ( t ) = ( 45 20 3 e − 4 t , 20 e − 4 t − 4 t ) .
Show that $r(t) = (\frac{5\sqrt{3}}{8}(1 - e^{-4t}) \quad \frac{45}{8}(1 - e^{-4t}))$. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To derive r ( t ) r(t) r ( t ) , we integrate the velocity vector:
r ( t ) = ∫ v ( t ) d t . r(t) = \int v(t) \, dt. r ( t ) = ∫ v ( t ) d t .
Integrating each component yields:
r ( t ) = ( 5 3 8 ( 1 − e − 4 t ) , 45 8 ( 1 − e − 4 t ) ) + C . r(t) = \left(\frac{5\sqrt{3}}{8}(1 - e^{-4t}), \frac{45}{8}(1 - e^{-4t})\right) + C. r ( t ) = ( 8 5 3 ( 1 − e − 4 t ) , 8 45 ( 1 − e − 4 t ) ) + C .
Applying initial conditions confirms the constants yield the required expression.
Using the diagram, find the horizontal range of the particle, giving your answer rounded to one decimal place. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
From the graph, when y = 0 y = 0 y = 0 , we set:
1 − e − 4 t = 4 x 9 . 1 - e^{-4t} = \frac{4x}{9}. 1 − e − 4 t = 9 4 x .
Solving for x x x , we get the range:
Thus, the horizontal range x 0 = 2.25 x_{0} = 2.25 x 0 = 2.25 .
The range is calculated as:
Range = 5 3 8 ( 1 − e − 4 t ) . \text{Range} = \frac{5\sqrt{3}}{8}(1 - e^{-4t}). Range = 8 5 3 ( 1 − e − 4 t ) .
Evaluating gives ≈ 8.7 \approx 8.7 ≈ 8.7 m.
Join the SSCE students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved