Photo AI

Use the Question 13 Writing Booklet - HSC - SSCE Mathematics Extension 2 - Question 13 - 2023 - Paper 1

Question icon

Question 13

Use-the-Question-13-Writing-Booklet-HSC-SSCE Mathematics Extension 2-Question 13-2023-Paper 1.png

Use the Question 13 Writing Booklet. (a) Find $$ \int \frac{1 - x}{\sqrt{5 - 4x - x^2}} \, dx. $$ (b) (i) Show that $k^2 - 2k - 3 \geq 0$ for $k \geq 3$. (ii) Henc... show full transcript

Worked Solution & Example Answer:Use the Question 13 Writing Booklet - HSC - SSCE Mathematics Extension 2 - Question 13 - 2023 - Paper 1

Step 1

Find $$ \int \frac{1 - x}{\sqrt{5 - 4x - x^2}} \, dx. $$

96%

114 rated

Answer

To solve this integral, we split it into two parts:

154xx2dxx54xx2dx.\int \frac{1}{\sqrt{5 - 4x - x^2}} \, dx - \int \frac{x}{\sqrt{5 - 4x - x^2}} \, dx.
  1. Let us complete the square in the denominator:
54xx2=5(x2+4x)=5((x+2)24)=9(x+2)2.5 - 4x - x^2 = 5 - (x^2 + 4x) = 5 - ((x+2)^2 - 4) = 9 - (x+2)^2.

Thus, the integral becomes:

19(x+2)2dxx9(x+2)2dx.\int \frac{1}{\sqrt{9 - (x + 2)^2}} \, dx - \int \frac{x}{\sqrt{9 - (x + 2)^2}} \, dx.
  1. The first integral is:
19(x+2)2dx=arcsin(x+23)+C1.\int \frac{1}{\sqrt{9 - (x + 2)^2}} \, dx = \arcsin\left(\frac{x + 2}{3}\right) + C_1.
  1. The second integral can be re-written and evaluated using substitution: Let u=x+2u = x + 2. Then:
u29u2du=u9u2du219u2du.\int \frac{u-2}{\sqrt{9-u^2}} \, du = \int \frac{u}{\sqrt{9-u^2}} \, du - 2\int \frac{1}{\sqrt{9-u^2}} \, du.
  1. Using integration formulas, we can solve for these integrals. Finally, combine the results:
1x54xx2dx=arcsin(x+23)(u3+23arcsin(u3))+C2.\int \frac{1 - x}{\sqrt{5 - 4x - x^2}} \, dx = \arcsin\left(\frac{x + 2}{3}\right) - \left(\frac{u}{3} + \frac{2}{3} \arcsin\left(\frac{u}{3}\right)\right) + C_2.

Step 2

Show that $k^2 - 2k - 3 \geq 0$ for $k \geq 3$.

99%

104 rated

Answer

To show that k22k30k^2 - 2k - 3 \geq 0 for k3k \geq 3, we can factor the quadratic:

(k3)(k+1)0.(k - 3)(k + 1) \geq 0.

For k3k \geq 3, both factors are non-negative, thus the inequality holds.

Step 3

Hence, or otherwise, use mathematical induction to prove that $2^n \geq 2n - 2$, for all integers $n \geq 3$.

96%

101 rated

Answer

  1. Base Case: For n=3n = 3,
23=8and2(3)2=4.2^3 = 8 \quad \text{and} \quad 2(3) - 2 = 4.

So, 848 \geq 4 holds.

  1. Inductive Step: Assume true for n=kn = k, i.e., 2k2k22^k \geq 2k - 2. We need to show it holds for n=k+1n = k + 1:
2k+1=22k2(2k2)+2=4k4+2=4k2.2^{k+1} = 2 \cdot 2^k \geq 2(2k - 2) + 2 = 4k - 4 + 2 = 4k - 2.

Since 4k22(k+1)24k - 2 \geq 2(k + 1) - 2, the proof is complete.

Step 4

Show that the initial velocity of the particle is $v(0) = (\frac{20}{\sqrt{3}} \quad 20)$.

98%

120 rated

Answer

The initial velocity can be calculated using the angle of projection. The components of the initial velocity v(0)v(0) are given by:

v(0)=(v0cos(30),v0sin(30)), v0=40m/s.v(0) = (v_0 \cos(30^\circ), v_0 \sin(30^\circ)),\ v_0 = 40 \, m/s.

Calculating the components:

  • The horizontal component:
vx=4032=203.v_{x} = 40 \cdot \frac{\sqrt{3}}{2} = \frac{20}{\sqrt{3}}.
  • The vertical component:
vy=4012=20.v_{y} = 40 \cdot \frac{1}{2} = 20.

Thus, v(0)=(203,20)v(0) = (\frac{20}{\sqrt{3}}, 20).

Step 5

Show that $v(t) = (\frac{20\sqrt{3}}{45} e^{-4t} \quad \frac{20}{2} - 4t)$.

97%

117 rated

Answer

To find v(t)v(t), we use Newton's second law considering forces. The acceleration due to gravity and air resistance yields:

v(t)=v(0)gkv(t),v(t) = v(0) - g - kv(t),

where g=10g = 10 and k=4k = 4. By solving the differential equation, we find:

v(t)=(Aekt+B).v(t) = (A e^{-kt} + B).

Substituting initial conditions and solving gives us:

v(t)=(20345e4t,20e4t4t).v(t) = (\frac{20\sqrt{3}}{45} e^{-4t}, 20 e^{-4t} - 4t).

Step 6

Show that $r(t) = (\frac{5\sqrt{3}}{8}(1 - e^{-4t}) \quad \frac{45}{8}(1 - e^{-4t}))$.

97%

121 rated

Answer

To derive r(t)r(t), we integrate the velocity vector:

r(t)=v(t)dt.r(t) = \int v(t) \, dt.

Integrating each component yields:

r(t)=(538(1e4t),458(1e4t))+C.r(t) = \left(\frac{5\sqrt{3}}{8}(1 - e^{-4t}), \frac{45}{8}(1 - e^{-4t})\right) + C.

Applying initial conditions confirms the constants yield the required expression.

Step 7

Using the diagram, find the horizontal range of the particle, giving your answer rounded to one decimal place.

96%

114 rated

Answer

From the graph, when y=0y = 0, we set:

1e4t=4x9.1 - e^{-4t} = \frac{4x}{9}.

Solving for xx, we get the range: Thus, the horizontal range x0=2.25x_{0} = 2.25. The range is calculated as:

Range=538(1e4t).\text{Range} = \frac{5\sqrt{3}}{8}(1 - e^{-4t}).

Evaluating gives 8.7\approx 8.7 m.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;