Photo AI

Let $w = 2 - 3i$ and $z = 3 + 4i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2011 - Paper 1

Question icon

Question 2

Let-$w-=-2---3i$-and-$z-=-3-+-4i$-HSC-SSCE Mathematics Extension 2-Question 2-2011-Paper 1.png

Let $w = 2 - 3i$ and $z = 3 + 4i$. (i) Find $\bar{w} + z$. (ii) Find $|w|$. (iii) Express $\frac{w}{z}$ in the form $a + bi$, where $a$ and $b$ are real numbers.... show full transcript

Worked Solution & Example Answer:Let $w = 2 - 3i$ and $z = 3 + 4i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2011 - Paper 1

Step 1

Find $\bar{w} + z$

96%

114 rated

Answer

To find wˉ\bar{w}, we need to take the conjugate of ww:

wˉ=2+3i.\bar{w} = 2 + 3i.

Now we compute:

wˉ+z=(2+3i)+(3+4i)=5+7i.\bar{w} + z = (2 + 3i) + (3 + 4i) = 5 + 7i.

Step 2

Find $|w|$

99%

104 rated

Answer

The modulus of ww is given by:

w=(Re(w))2+(Im(w))2=22+(3)2=4+9=13.|w| = \sqrt{(\text{Re}(w))^2 + (\text{Im}(w))^2} = \sqrt{2^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13}.

Step 3

Express $\frac{w}{z}$ in the form $a + bi$

96%

101 rated

Answer

We calculate:

wz=23i3+4i.\frac{w}{z} = \frac{2 - 3i}{3 + 4i}.

To express this in the form a+bia + bi, we multiply the numerator and denominator by the conjugate of the denominator:

=(23i)(34i)(3+4i)(34i)=(68i9i+12)9+16=(1817i)25=18251725i.= \frac{(2 - 3i)(3 - 4i)}{(3 + 4i)(3 - 4i)} = \frac{(6 - 8i - 9i + 12)}{9 + 16} = \frac{(18 - 17i)}{25} = \frac{18}{25} - \frac{17}{25}i.

Thus, we have:

wz=18251725i.\frac{w}{z} = \frac{18}{25} - \frac{17}{25}i.

Step 4

Find $z$ in the form $a + bi$

98%

120 rated

Answer

By observing the rhombus, we see that the points 00, 1+i31 + i\sqrt{3}, and 3+i\sqrt{3} + i together form two sides of the rhombus. The diagonal from 00 to 3+i\sqrt{3} + i can be computed as:

z=3+i=3+1i.z = \sqrt{3} + i = \sqrt{3} + 1i.

Step 5

Find the value of $\theta$

97%

117 rated

Answer

In a rhombus, opposite angles are equal. The angle θ\theta can be derived from the slopes of the sides.

Using trigonometry, we can find the interior angle:

tan(θ)=31=3.\tan(\theta) = \frac{\sqrt{3}}{1} = \sqrt{3}.

Thus,

θ=60=π3.\theta = 60^\circ = \frac{\pi}{3}.

Step 6

Find all solutions of $z^3 = 8$

97%

121 rated

Answer

This can be expressed in modulus-argument form as:

z=2cis(2kπ3) for k=0,1,2,z = 2\text{cis}(\frac{2k\pi}{3}) \text{ for } k = 0, 1, 2,

where cisθ=cosθ+isinθ.\text{cis}\theta = \cos\theta + i\sin\theta. Therefore, the solutions are:

z0=2cis(0),z1=2cis(2π3),z2=2cis(4π3).z_0 = 2\text{cis}(0), \quad z_1 = 2\text{cis}(\frac{2\pi}{3}), \quad z_2 = 2\text{cis}(\frac{4\pi}{3}).

Step 7

Use the binomial theorem to expand $\cos(\theta + \sin(\theta))^3$

96%

114 rated

Answer

Using the binomial theorem, we expand:

(x+y)3=x3+3x2y+3xy2+y3.(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3.

If we let x=cosθx = \cos\theta and y=sinθy = \sin\theta, we have:

cos(θ+sin(θ))3=(cosθ+sinθ)3=cos3θ+3cos2θsinθ+3cosθsin2θ+sin3θ.\cos(\theta + \sin(\theta))^3 = (\cos\theta + \sin\theta)^3 = \cos^3\theta + 3\cos^2\theta \sin\theta + 3\cos\theta \sin^2\theta + \sin^3\theta.

Step 8

Use De Moivre's theorem to prove that $\cos^3\theta = \frac{1}{4}\cos 3\theta + \frac{3}{4}$

99%

104 rated

Answer

According to De Moivre's theorem, we express:

cos(3θ)=cos3θ3cosθsin2θ.\cos(3\theta) = \cos^3\theta - 3\cos\theta\sin^2\theta.

From our expansion, we identify that:

sin2θ=1cos2θ,\sin^2\theta = 1 - \cos^2\theta,

therefore:

cos(3θ)=cos3θ3cosθ(1cos2θ).\cos(3\theta) = \cos^3\theta - 3\cos\theta(1 - \cos^2\theta).

Rearranging yields:

cos3θ=14cos(3θ)+34.\cos^3\theta = \frac{1}{4}\cos(3\theta) + \frac{3}{4}.

Step 9

Find the smallest positive solution of $4\cos^3\theta - 3\cos\theta = 1$

96%

101 rated

Answer

This is equivalent to:

4cos3θ3cosθ1=0.4\cos^3\theta - 3\cos\theta - 1 = 0.

Using the previous relationship found, we can solve this polynomial equation for cosθ\cos\theta, obtaining:

Let:

x=cosθ,x = \cos\theta,

Leading to:

4x33x1=0.4x^3 - 3x - 1 = 0.

Using numerical methods or the rational root theorem, we find that the smallest positive solution is at another specified angle. The solution yields:

θ0.52.\theta \approx 0.52.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;