Photo AI

Let $z=3+i$ and $w=2-5i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2006 - Paper 1

Question icon

Question 2

Let-$z=3+i$-and-$w=2-5i$-HSC-SSCE Mathematics Extension 2-Question 2-2006-Paper 1.png

Let $z=3+i$ and $w=2-5i$. Find, in the form $x+iy$. (i) $z^2$ (ii) $zw$ (iii) $\frac{w}{z}$ (i) Express $\sqrt{3}-i$ in modulus-argument form. (ii) Express ... show full transcript

Worked Solution & Example Answer:Let $z=3+i$ and $w=2-5i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2006 - Paper 1

Step 1

(i) $z^2$

96%

114 rated

Answer

First, calculate z2z^2:

z2=(3+i)2=32+23i+i2=9+6i1=8+6iz^2 = (3 + i)^2 = 3^2 + 2 \cdot 3 \cdot i + i^2 = 9 + 6i - 1 = 8 + 6i

Thus, z2=8+6iz^2 = 8 + 6i.

Step 2

(ii) $zw$

99%

104 rated

Answer

Next, calculate zwzw:

zw=(3+i)(25i)=32+3(5i)+i2+i(5i)zw = (3 + i)(2 - 5i) = 3 \cdot 2 + 3 \cdot (-5i) + i \cdot 2 + i \cdot (-5i)

This simplifies to:

615i+2i+5=1113i6 - 15i + 2i + 5 = 11 - 13i

So, zw=1113izw = 11 - 13i.

Step 3

(iii) $\frac{w}{z}$

96%

101 rated

Answer

To find wz\frac{w}{z}, perform the division:

wz=25i3+i\frac{w}{z} = \frac{2 - 5i}{3 + i}

Multiply the numerator and denominator by the complex conjugate of the denominator:

=(25i)(3i)(3+i)(3i)=62i15i+59+1=1117i10=1.11.7i= \frac{(2 - 5i)(3 - i)}{(3 + i)(3 - i)} = \frac{6 - 2i - 15i + 5}{9 + 1} = \frac{11 - 17i}{10} = 1.1 - 1.7i

Thus, wz=1.11.7i\frac{w}{z} = 1.1 - 1.7i.

Step 4

(i) Express $\sqrt{3}-i$ in modulus-argument form.

98%

120 rated

Answer

First, calculate the modulus:

r=3i=(3)2+(1)2=3+1=2r = |\sqrt{3}-i| = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = 2

Next, calculate the argument:

θ=tan1(13)=π6\theta = \tan^{-1}\left(\frac{-1}{\sqrt{3}}\right) = -\frac{\pi}{6}

Thus, in modulus-argument form, 3i=2cis(π6)\sqrt{3}-i = 2 \text{cis}\left(-\frac{\pi}{6}\right).

Step 5

(ii) Express $\left(\sqrt{3}-i\right)$ in modulus-argument form.

97%

117 rated

Answer

This step is identical to part (i). Hence,

(3i)=2cis(π6)\left(\sqrt{3}-i\right) = 2 \text{cis}\left(-\frac{\pi}{6}\right).

Step 6

(iii) Hence express $\left(\sqrt{3}-i\right)^7$ in the form $x+iy$.

97%

121 rated

Answer

Now we use De Moivre's theorem:

(3i)7=r7cis(7θ)=27cis(7π6)=128cis(7π6)\left(\sqrt{3}-i\right)^7 = r^7 \text{cis}(7\theta) = 2^7 \text{cis}\left(7 \cdot -\frac{\pi}{6}\right) = 128 \text{cis}\left(-\frac{7\pi}{6}\right).

Next, express in x+iyx + iy:

cis(7π6)=3212i\text{cis}\left(-\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2} - \frac{1}{2}i

Therefore:

(3i)7=128(3212i)=64364i\left(\sqrt{3}-i\right)^7 = 128\left(-\frac{\sqrt{3}}{2} - \frac{1}{2}i\right) = -64\sqrt{3} - 64i.

Step 7

Find, in modulus-argument form, all solutions of $z^3=-1$.

96%

114 rated

Answer

To find the solutions to z3=1z^3 = -1, rewrite this in modulus-argument form:

1=1cisπ-1 = 1\text{cis} \pi.

Finding the cube roots involves:

zk=13cis(π+2kπ3),k=0,1,2z_k = \sqrt[3]{1}\text{cis}\left(\frac{\pi + 2k\pi}{3}\right), \quad k = 0, 1, 2.

Calculating the roots:

  1. For k=0k=0: z0=1cis(π3)z_0 = 1\text{cis}\left(\frac{\pi}{3}\right)
  2. For k=1k=1: z1=1cis(π)=1z_1 = 1\text{cis}\left(\pi\right)\, = -1
  3. For k=2k=2: z2=1cis(5π3)z_2 = 1\text{cis}\left(\frac{5\pi}{3}\right)

Thus, the solutions are:

z0=1cis(π3),z1=1,z2=1cis(5π3).z_0 = 1\text{cis}\left(\frac{\pi}{3}\right), z_1 = -1, z_2 = 1\text{cis}\left(\frac{5\pi}{3}\right).

Step 8

(i) Write down the complex number corresponding to the centre of the ellipse.

99%

104 rated

Answer

The center of the ellipse corresponds to the average of the foci:

Centre=(1+9)+(3i+3i)2=102+3i=5+3i.\text{Centre} = \frac{(1 + 9) + (3i + 3i)}{2} = \frac{10}{2} + 3i = 5 + 3i.

Step 9

(ii) Sketch the ellipse, and state the lengths of the major and minor axes.

96%

101 rated

Answer

The equation represents an ellipse centered at 5+3i5 + 3i with foci at 1+3i1 + 3i and 9+3i9 + 3i. The distance between the foci is 8.

The total distance of 1010 provides the lengths of the axes:

  • Major axis length: 1010
  • Minor axis length: 10282=36=6\sqrt{10^2 - 8^2} = \sqrt{36} = 6.

Draw the ellipse based on the center and axes provided.

Step 10

(iii) Write down the range of $\arg(z)$ for complex numbers $z$ corresponding to points on the ellipse.

98%

120 rated

Answer

To find the range of arg(z)\arg(z), consider the angle subtended by the endpoints of the line segment along the major axis:

At focus 1+3i1 + 3i: arg(1+3i)=tan1(3)\arg(1 + 3i) = \tan^{-1}(3)

At focus 9+3i9 + 3i: arg(9+3i)=tan1(39)=tan1(13)\arg(9 + 3i) = \tan^{-1}(\frac{3}{9}) = \tan^{-1}(\frac{1}{3})

Thus, the range of arg(z)\arg(z) corresponds to:

[tan1(13),tan1(3)].\left[\tan^{-1}(\frac{1}{3}), \tan^{-1}(3)\right].

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;