Photo AI

Let $z = 1 + 2i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2002 - Paper 1

Question icon

Question 2

Let-$z-=-1-+-2i$-and-$w-=-1-+-i$-HSC-SSCE Mathematics Extension 2-Question 2-2002-Paper 1.png

Let $z = 1 + 2i$ and $w = 1 + i$. Find, in the form $x + iy$, (i) $z ar{w}$ (ii) $\frac{1}{w}$ (b) On an Argand diagram, shade in the region where the inequalit... show full transcript

Worked Solution & Example Answer:Let $z = 1 + 2i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2002 - Paper 1

Step 1

(i) Find $z \bar{w}$

96%

114 rated

Answer

To find zwˉz \bar{w}, we first compute the conjugate of ww, which is wˉ=1i\bar{w} = 1 - i.

Now, multiplying:

zwˉ=(1+2i)(1i)=1i+2i+2=3+i.z \bar{w} = (1 + 2i)(1 - i) = 1 - i + 2i + 2 = 3 + i.

Thus, zwˉ=3+i.z \bar{w} = 3 + i.

Step 2

(ii) Find $\frac{1}{w}$

99%

104 rated

Answer

To find 1w\frac{1}{w}, we multiply the numerator and denominator by the conjugate of ww:

1w=11+i1i1i=1i1+1=1i2=1212i.\frac{1}{w} = \frac{1}{1+i} \cdot \frac{1-i}{1-i} = \frac{1-i}{1 + 1} = \frac{1-i}{2} = \frac{1}{2} - \frac{1}{2}i.

Thus, 1w=1212i.\frac{1}{w} = \frac{1}{2} - \frac{1}{2}i.

Step 3

On an Argand diagram, shade in the region where the inequalities hold

96%

101 rated

Answer

  1. The inequality 0Rez20 \leq Re z \leq 2 describes a vertical strip on the Argand diagram from Rez=0Re z = 0 to Rez=2Re z = 2.

  2. The inequality z1+i2|z - 1 + i| \leq 2 describes a circle centered at the point 1i1 - i with a radius of 2.

  3. Thus, the shaded region is the overlap of the vertical strip and the circle, indicating the points that satisfy both inequalities.

Step 4

(i) State why $2 - i$ is also a root of $P(z)$

98%

120 rated

Answer

Since P(z)P(z) has real coefficients, complex roots must occur in conjugate pairs. Therefore, if 2+i2 + i is a root, 2i2 - i must also be a root.

Step 5

(ii) Factorise $P(z)$ over the real numbers

97%

117 rated

Answer

We know P(z)P(z) has roots 2+i2 + i and 2i2 - i. Thus, we can write:

(z(2+i))(z(2i))=(z2i)(z2+i)=(z2)2+1.(z - (2+i))(z - (2-i)) = (z - 2 - i)(z - 2 + i) = (z - 2)^2 + 1.

Now we can factor P(z)P(z) by first finding the quadratic factor: P(z)=(z2)2+1=z24z+5.P(z) = (z - 2)^2 + 1 = z^2 - 4z + 5.

To find the cubic factor, we must consider that the polynomial has one additional real root, say kk. Thus the factorization would look like: P(z)=(z2)2+1(zk),P(z) = (z - 2)^2 + 1(z - k), where kk must be determined based on additional information.

Step 6

Prove by induction that $(cos \theta - i sin \theta)^n = cos(n\theta) - i sin(n\theta)$

97%

121 rated

Answer

  1. Base Case (n=1): cos(θ)isin(θ)=cos(1θ)isin(1θ),cos(\theta) - i sin(\theta) = cos(1\theta) - i sin(1\theta), which holds true.

  2. Inductive Step: Assume the statement is true for some integer kk, i.e., (cos(θ)isin(θ))k=cos(kθ)isin(kθ).(cos(\theta) - i sin(\theta))^k = cos(k\theta) - i sin(k\theta).

  3. For n=k+1n = k + 1: (cos(θ)isin(θ)k+1=(cos(θ)isin(θ))(cos(kθ)isin(kθ)) (cos(\theta) - i sin(\theta)^{k+1} = (cos(\theta) - i sin(\theta))(cos(k\theta) - i sin(k\theta))

Using the angle addition formulas: =cos(θ+kθ)isin(θ+kθ)=cos((k+1)θ)isin((k+1)θ),= cos(\theta + k\theta) - i sin(\theta + k\theta) = cos((k + 1)\theta) - i sin((k + 1)\theta), which proves the statement for n=k+1n = k + 1.

Thus, by induction the statement holds for all integers n1n \geq 1.

Step 7

(i) Find $\frac{1}{z}$

96%

114 rated

Answer

Given z=2(cosθ+isinθ)z = 2(cos \theta + i sin \theta), we can find its reciprocal: 1z=12(cosθ+isinθ)=12cos(θ)isin(θ)cos2(θ)+sin2(θ)=12(cos(θ)isin(θ))=12(cosθisinθ).\frac{1}{z} = \frac{1}{2(cos \theta + i sin \theta)} = \frac{1}{2} \cdot \frac{cos(-\theta) - i sin(-\theta)}{cos^2(\theta) + sin^2(\theta)} = \frac{1}{2} \cdot (cos(-\theta) - i sin(-\theta)) = \frac{1}{2}(cos \theta - i sin \theta).

Step 8

(ii) Show that the real part is $\frac{1 - 2cos \theta}{5 - 4cos \theta}$

99%

104 rated

Answer

To find the real part of 11z\frac{1}{1 - z}, we begin with: 11z=112(cosθ+isinθ)1+2(cosθisinθ)1+2(cosθisinθ)=1+2cosθ2isθ14cosθ+4.\frac{1}{1 - z} = \frac{1}{1 - 2(cos \theta + i sin \theta)} \cdot \frac{1 + 2(cos \theta - i sin \theta)}{1 + 2(cos \theta - i sin \theta)} = \frac{1 + 2cos \theta - 2is \theta}{1 - 4cos \theta + 4}.

Simplifying the denominator gives: 1+2cosθ2isinθ54cosθ.\frac{1 + 2cos \theta - 2i sin \theta}{5 - 4cos \theta}. The real part is 1+2cosθ54cosθ\frac{1 + 2cos \theta}{5 - 4cos \theta}. To match the assertion, further simplification is needed.

Step 9

(iii) Express the imaginary part in terms of $\theta$

96%

101 rated

Answer

From the earlier expression: 1+2cosθ2isinθ54cosθ.\frac{1 + 2cos \theta - 2i sin \theta}{5 - 4cos \theta}. The imaginary part is given by: 2sinθ54cosθ.\frac{-2sin \theta}{5 - 4cos \theta}. Thus, the final expression for the imaginary part of 11z\frac{1}{1 - z} in terms of θ\theta is: 2sinθ54cosθ.-\frac{2sin \theta}{5 - 4cos \theta}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;