Photo AI

Let $z = 2 + 3i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2001 - Paper 1

Question icon

Question 2

Let-$z-=-2-+-3i$-and-$w-=-1-+-i$-HSC-SSCE Mathematics Extension 2-Question 2-2001-Paper 1.png

Let $z = 2 + 3i$ and $w = 1 + i$. (a) (i) Find $zw$ in the form $x + iy$. (ii) Find $\frac{1}{w}$ in the form $x + iy$. (b) (i) Express $1 + \sqrt{3}i$ in modul... show full transcript

Worked Solution & Example Answer:Let $z = 2 + 3i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2001 - Paper 1

Step 1

Find $zw$ in the form $x + iy$

96%

114 rated

Answer

To find the product of zz and ww, we perform the multiplication:

zw=(2+3i)(1+i)=21+2i+3i1+3ii=2+2i+3i3=1+5i.zw = (2 + 3i)(1 + i) = 2 \cdot 1 + 2 \cdot i + 3i \cdot 1 + 3i \cdot i = 2 + 2i + 3i - 3 = -1 + 5i.

Thus, we have:

zw=1+5i.zw = -1 + 5i.

Step 2

Find $\frac{1}{w}$ in the form $x + iy$

99%

104 rated

Answer

To find the reciprocal of ww, we apply the formula:

1w=11+i=1(1i)(1+i)(1i)=1i1+1=1i2=1212i.\frac{1}{w} = \frac{1}{1 + i} = \frac{1(1 - i)}{(1 + i)(1 - i)} = \frac{1 - i}{1 + 1} = \frac{1 - i}{2} = \frac{1}{2} - \frac{1}{2}i.

Step 3

Express $1 + \sqrt{3}i$ in modulus-argument form

96%

101 rated

Answer

First, we find the modulus:

r=1+3i=12+(3)2=1+3=2.r = |1 + \sqrt{3}i| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = 2.

Next, we find the argument:

θ=arg(1+3i)=tan1(31)=π3.\theta = \arg(1 + \sqrt{3}i) = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3}.

So, the modulus-argument form is:

1+3i=2(cos(π3)+isin(π3)).1 + \sqrt{3}i = 2 \left(\cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right)\right).

Step 4

Hence evaluate $(1 + \sqrt{3}i)^{10}$ in the form $x + iy$

98%

120 rated

Answer

Using De Moivre's Theorem:

(1+3i)10=(2)10(cos(10π3)+isin(10π3))=1024(cos(10π3)+isin(10π3)).(1 + \sqrt{3}i)^{10} = \left(2\right)^{10} \left(\cos\left(10 \cdot \frac{\pi}{3}\right) + i \sin\left(10 \cdot \frac{\pi}{3}\right)\right) = 1024 \left(\cos\left(\frac{10\pi}{3}\right) + i \sin\left(\frac{10\pi}{3}\right)\right).

Now simplifying:

10π3=3π+1π3cos(10π3)=cos(π3)=12,sin(10π3)=sin(π3)=32.\frac{10\pi}{3} = 3\pi + \frac{1\pi}{3} \Rightarrow\cos\left(\frac{10\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \sin\left(\frac{10\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}.

So,

    (1+3i)10=1024(12+i32)=512+5123i.\implies (1 + \sqrt{3}i)^{10} = 1024 \left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) = 512 + 512\sqrt{3}i.

Step 5

Sketch the region in the complex plane

97%

117 rated

Answer

To sketch the region defined by the inequalities:

  1. The inequality z+12i3|z + 1 - 2i| \leq 3 describes a circle centered at (1,2)(-1, 2) with a radius of 3.

  2. The inequality π3argzπ4-\frac{\pi}{3} \leq \arg z \leq \frac{\pi}{4} describes a sector of the complex plane between these two angles.

Combining both, we look for the area inside the circle that also falls within the angles of the sector.

Step 6

Find all solutions of the equation $z^{4} = -1$

97%

121 rated

Answer

The equation can be rewritten as:

z4=eiπz^{4} = e^{i\pi}

By taking the fourth root:

z=ei(π+2kπ)/4,k=0,1,2,3.z = e^{i(\pi + 2k\pi)/4}, k = 0, 1, 2, 3.

Calculating for each kk gives:

  • For k=0k=0: z=eiπ4=22+i22z = e^{i\frac{\pi}{4}} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}.
  • For k=1k=1: z=ei3π4=22+i22z = e^{i\frac{3\pi}{4}} = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}.
  • For k=2k=2: z=ei5π4=22i22z = e^{i\frac{5\pi}{4}} = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}.
  • For k=3k=3: z=ei7π4=22i22z = e^{i\frac{7\pi}{4}} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}.

So, the solutions in modulus-argument form are:

z=1 at argπ4, and similar for the others.z = 1 \text{ at } \arg \frac{\pi}{4}, \text{ and similar for the others.}

Step 7

Explain why $|z_1 - z_2| = |z_3 - z_2|$

96%

114 rated

Answer

Since triangle ABCABC is isosceles and right-angled at BB, the lengths of ABAB and BCBC are equal. Thus:

z1z2=z3z2|z_1 - z_2| = |z_3 - z_2|

as both represent the lengths of the sides meeting at BB.

Step 8

Find the complex number that represents $D$

99%

104 rated

Answer

Given that ABCDABCD is a square,

We can express DD as the point obtained by rotating CC around BB by 90 degrees:

D=z2+(z3z2)i=z2+(z3z2)(i)D = z_2 + (z_3 - z_2)i = z_2 + (z_3 - z_2)(i)

This gives us the position of point DD expressed in terms of z1z_1, z2z_2, and z3z_3.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;