Photo AI
Question 11
a) Express \( 3 - i \) in the form \( x + iy \), where \( x \) and \( y \) are real numbers. b) Evaluate \( \sin^2 2x \cos 2x \, dx \). c) i) Write the complex num... show full transcript
Step 1
Answer
To express ( 3 - i ) in the form ( x + iy ), we need to simplify the expression:
[ \frac{3 - i}{2 + i} \cdot \frac{2 - i}{2 - i} = \frac{(3 - i)(2 - i)}{(2 + i)(2 - i)} ]
Calculating the denominator:
[ (2 + i)(2 - i) = 2^2 + 1^2 = 4 + 1 = 5 ]
Calculating the numerator:
[ (3 - i)(2 - i) = 6 - 3i - 2i + i^2 = 6 - 5i - 1 = 5 - 5i ]
Thus, [ \frac{5 - 5i}{5} = 1 - i ]
So, ( x = 1 ) and ( y = -1 ).
Step 2
Answer
To evaluate ( \int \sin^2 2x \cos 2x , dx ), we can use the substitution method.
Let ( u = \sin 2x ), therefore ( du = 2 \cos 2x , dx ) or ( dx = \frac{du}{2 \cos 2x} ).
The integral becomes:
[ \int \sin^2 2x \cos 2x , dx = \frac{1}{2} \int u^2 , du = \frac{1}{2} \cdot \frac{u^3}{3} + C = \frac{1}{6} \sin^3 2x + C ]
Step 3
Answer
The complex number ( -\sqrt{3} + i ) can be expressed in exponential form as follows:
First, we find the modulus:
[ |z| = \sqrt{(-\sqrt{3})^2 + 1^2} = \sqrt{3 + 1} = 2 ]
Next, we determine the argument:
[ \theta = \tan^{-1}\left( \frac{1}{-\sqrt{3}} \right) = \frac{5\pi}{6} ]
Thus, in exponential form, we have:
[ z = 2 e^{i \frac{5\pi}{6}}]
Step 4
Answer
Using the exponential form we obtained, we can compute:
[ (-\sqrt{3} + i)^{10} = (2 e^{i \frac{5\pi}{6}})^{10} = 2^{10} e^{i \frac{50\pi}{6}} = 1024 e^{i \frac{25\pi}{3}} ]
To simplify, we reduce the argument:
[ \frac{25\pi}{3} - 8\pi = \frac{25\pi - 24\pi}{3} = \frac{\pi}{3} ]
Finally, [ (-\sqrt{3} + i)^{10} = 1024 e^{i \frac{\pi}{3}} = 1024 \left( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) = 1024 \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = 512 + 512i ]
Step 5
Answer
To find the size of ( \angle ABC ), we first need to calculate the vectors ( \overrightarrow{AB} ) and ( \overrightarrow{AC} ):
[\overrightarrow{AB} = B - A = \begin{pmatrix} 0 - 1 \ 2 - (-1) \ -1 - 2 \end{pmatrix} = \begin{pmatrix} -1 \ 3 \ -3 \end{pmatrix}]
[\overrightarrow{AC} = C - A = \begin{pmatrix} 2 - 1 \ 1 - (-1) \ 1 - 2 \end{pmatrix} = \begin{pmatrix} 1 \ 2 \ -1 \end{pmatrix}]
Now we calculate the dot product:\n [ \overrightarrow{AB} \cdot \overrightarrow{AC} = (-1)(1) + (3)(2) + (-3)(-1) = -1 + 6 + 3 = 8 ]
Next, we find the magnitudes of the vectors:
[|\overrightarrow{AB}| = \sqrt{(-1)^2 + 3^2 + (-3)^2} = \sqrt{1 + 9 + 9} = \sqrt{19}] [|\overrightarrow{AC}| = \sqrt{(1)^2 + (2)^2 + (-1)^2} = \sqrt{1 + 4 + 1} = \sqrt{6}]
Now we can use the cosine formula:
[\cos \angle ABC = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}| |\overrightarrow{AC}|} = \frac{8}{\sqrt{19} \sqrt{6}}]
Thus, [\angle ABC = \cos^{-1} \left( \frac{8}{\sqrt{114}} \right) \approx 33^\circ]
Step 6
Answer
Given the line ( l_1 ):
[\begin{pmatrix} x \ y \end{pmatrix} = \begin{pmatrix} -1 \ 2 \end{pmatrix} + \lambda \begin{pmatrix} 3 \ -7 \end{pmatrix}, \lambda \in \mathbb{R},]
The direction vector of ( l_1 ) is ( \begin{pmatrix} 3 \ -7 \end{pmatrix}). Since ( l_2 ) is parallel to ( l_1 ), it has the same slope. We also know that it passes through point ( A(-6, 5) ).
Using point-slope form:
[y - 5 = m(x + 6)]
Calculating the slope, we find:
Slope ( m = \frac{-7}{3} \Rightarrow y - 5 = \frac{-7}{3}(x + 6)]
Expanding this, we find: [y = \frac{-7}{3}x - 14 + 5 = \frac{-7}{3}x - 9]
Step 7
Answer
Starting with the substitution:
[t = \tan \frac{x}{2} \Rightarrow dx = \frac{2}{1 + t^2} dt]
We also know that:
[\cos x = \frac{1 - t^2}{1 + t^2} \quad \text{and} \quad \sin x = \frac{2t}{1 + t^2}]
Therefore, [1 + \cos x - \sin x = 1 + \frac{1 - t^2}{1 + t^2} - \frac{2t}{1 + t^2} = \frac{(1 + t^2 + 1 - t^2 - 2t)}{1 + t^2} = \frac{2 - 2t}{1 + t^2}]
Now substituting back into the integral:
[\int \frac{dx}{1 + \cos x - \sin x} = \int \frac{2}{(2 - 2t)(1 + t^2)} dt = \int \frac{1}{-(t - 1)(1 + t^2)} dt]
This can then be integrated using partial fractions.
Report Improved Results
Recommend to friends
Students Supported
Questions answered