Photo AI

Let $z = 2 + 3i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2001 - Paper 1

Question icon

Question 2

Let-$z-=-2-+-3i$-and-$w-=-1-+-i$-HSC-SSCE Mathematics Extension 2-Question 2-2001-Paper 1.png

Let $z = 2 + 3i$ and $w = 1 + i$. (a) Find $zw$ and $\frac{1}{w}$ in the form $x + iy$. (b) (i) Express $1 + \sqrt{3}i$ in modulus-argument form. (ii) Hence evalua... show full transcript

Worked Solution & Example Answer:Let $z = 2 + 3i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2001 - Paper 1

Step 1

Find $zw$ and $\frac{1}{w}$ in the form $x + iy$

96%

114 rated

Answer

To find zwzw, we multiply: zw=(2+3i)(1+i)=2+2i+3i+3i2=2+5i3=1+5i.zw = (2 + 3i)(1 + i) = 2 + 2i + 3i + 3i^2 = 2 + 5i - 3 = -1 + 5i.
Thus, zw=1+5izw = -1 + 5i.

To find 1w\frac{1}{w}, we rationalize the denominator: 1w=11+i1i1i=1i1+1=1i2=1212i.\frac{1}{w} = \frac{1}{1+i} \cdot \frac{1-i}{1-i} = \frac{1 - i}{1 + 1} = \frac{1 - i}{2} = \frac{1}{2} - \frac{1}{2}i.
Therefore, 1w=1212i\frac{1}{w} = \frac{1}{2} - \frac{1}{2}i.

Step 2

Express $1 + \sqrt{3}i$ in modulus-argument form

99%

104 rated

Answer

First, we compute the modulus: 1+3i=12+(3)2=1+3=2.|1 + \sqrt{3}i| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = 2.
Next, we find the argument: arg(1+3i)=tan1(31)=π3.\arg(1 + \sqrt{3}i) = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3}.
Therefore, the modulus-argument form is: 1+3i=2(cosπ3+isinπ3).1 + \sqrt{3}i = 2 \left(\cos\frac{\pi}{3} + i \sin\frac{\pi}{3}\right).

Step 3

Hence evaluate $(1 + \sqrt{3}i)^{10}$ in the form $x + iy$

96%

101 rated

Answer

Using De Moivre's Theorem, we have: (1+3i)10=(2cisπ3)10=210cis(10π3)=1024cis(10π32π)=1024cis(4π3).(1 + \sqrt{3}i)^{10} = \left(2 \text{cis}\frac{\pi}{3}\right)^{10} = 2^{10} \text{cis}\left(\frac{10\pi}{3}\right) = 1024 \text{cis}\left(\frac{10\pi}{3} - 2\pi\right) = 1024 \text{cis}\left(\frac{4\pi}{3}\right).
Calculating the Cartesian form: x+iy=1024(12)+i1024(32)=5125123i.x + iy = 1024 \left(-\frac{1}{2}\right) + i 1024 \left(-\frac{\sqrt{3}}{2}\right) = -512 - 512\sqrt{3}i.

Step 4

Sketch the region in the complex plane

98%

120 rated

Answer

We need to break this into two inequalities:

  1. For z+12i3|z + 1 - 2i| \leq 3, the circle is centered at (1,2)(-1, 2) with a radius of 3.
  2. The second inequality, π3argzπ4-\frac{\pi}{3} \leq \arg z \leq \frac{\pi}{4}, restricts zz to the angles in the arguments, resulting in a wedge shape.

The intersection of these two describes the desired region in the complex plane.

Step 5

Find all solutions of the equation $z^4 = -1$

97%

117 rated

Answer

Rewriting –1 in modulus-argument form gives: 1=1cis(π+2kπ),-1 = 1\text{cis}\left(\pi + 2k\pi\right), for k = 0, 1, 2, 3. Taking the fourth root: zk=14cis(π+2kπ4)=1cis(π4+kπ2),k=0,1,2,3.z_k = \sqrt[4]{1} \text{cis}\left(\frac{\pi + 2k\pi}{4}\right) = 1\text{cis}\left(\frac{\pi}{4} + \frac{k\pi}{2}\right), k = 0, 1, 2, 3.
This results in:

  • For k=0: z0=cisπ4z_0=\text{cis}\frac{\pi}{4},
  • For k=1: z1=cis3π4z_1=\text{cis}\frac{3\pi}{4},
  • For k=2: z2=cis5π4z_2=\text{cis}\frac{5\pi}{4},
  • For k=3: z3=cis7π4z_3=\text{cis}\frac{7\pi}{4}.
    Thus, the solutions are: z0,z1,z2,z3z_0, z_1, z_2, z_3.

Step 6

Explain why $|z_1 - z_2|^2 = |z_3 - z_2|^2$

97%

121 rated

Answer

Since triangle ABC is isosceles and right-angled at B, we know:

  1. AB=ACAB = AC.
  2. The lengths can be expressed in terms of the complex coordinates: z1z2=z3z2.|z_1 - z_2| = |z_3 - z_2|.
    Squaring both sides gives: z1z22=z3z22|z_1 - z_2|^2 = |z_3 - z_2|^2
    This holds due to the properties of the isosceles triangle, making the respective sides equal.

Step 7

Find the complex number that represents $D$

96%

114 rated

Answer

For points A, B, and C defined by z1,z2,andz3z_1, z_2, and z_3 respectively:

  1. The coordinates of D can be constructed by taking the translation and rotation from point A.
    Specifically for square ABCD: D=z1+(z1z2)i.D = z_1 + (z_1 - z_2)i.
    Thus, expressing DD in terms of z1,z2,z3z_1, z_2, z_3 reflects both the translation and resulting vertices.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;