Photo AI

Let $z = 4 + i$ and $w = ar{z}$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2007 - Paper 1

Question icon

Question 2

Let-$z-=-4-+-i$-and-$w-=-ar{z}$-HSC-SSCE Mathematics Extension 2-Question 2-2007-Paper 1.png

Let $z = 4 + i$ and $w = ar{z}$. Find, in the form $x + iy$, (i) $w$ (ii) $w - z$ (iii) $\frac{z}{w}$ Write $1 + i$ in the form $r(cos \theta + i sin \t... show full transcript

Worked Solution & Example Answer:Let $z = 4 + i$ and $w = ar{z}$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2007 - Paper 1

Step 1

Find, in the form $x + iy$, (i) $w$

96%

114 rated

Answer

To find w=zˉw = \bar{z}, we take the complex conjugate of zz:

w=zˉ=4i.w = \bar{z} = 4 - i.

Step 2

Find, in the form $x + iy$, (ii) $w - z$

99%

104 rated

Answer

Subtracting zz from ww, we get:

wz=(4i)(4+i)=2i.w - z = (4 - i) - (4 + i) = -2i.

Step 3

Find, in the form $x + iy$, (iii) $\frac{z}{w}$

96%

101 rated

Answer

Now we compute:

zw=4+i4i.\frac{z}{w} = \frac{4 + i}{4 - i}.

To simplify, multiply by the conjugate of the denominator:

(4+i)(4+i)(4i)(4+i)=16+8i116+1=15+8i17=1517+817i.\frac{(4 + i)(4 + i)}{(4 - i)(4 + i)} = \frac{16 + 8i - 1}{16 + 1} = \frac{15 + 8i}{17} = \frac{15}{17} + \frac{8}{17}i.

Step 4

Write $1 + i$ in the form $r(cos \theta + i sin \theta)$

98%

120 rated

Answer

To convert 1+i1 + i into polar form:

  • Calculate the modulus:

    r=1+i=12+12=2.r = |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2}.

  • Calculate the argument:

    θ=tan1(11)=π4.\theta = \tan^{-1}(\frac{1}{1}) = \frac{\pi}{4}.

Thus, we have:

1+i=2(cosπ4+isinπ4).1 + i = \sqrt{2}(cos \frac{\pi}{4} + i sin \frac{\pi}{4}).

Step 5

Hence, or otherwise, find $(1+i)^{17}$ in the form $a + ib$, where $a$ and $b$ are integers.

97%

117 rated

Answer

Using De Moivre's theorem:

(1+i)17=(2)17(cos(17π4)+isin(17π4)).(1 + i)^{17} = (\sqrt{2})^{17}\left( cos\left( 17 \frac{\pi}{4} \right) + i sin\left( 17 \frac{\pi}{4} \right) \right).

Calculating the modulus:

d = (2)17=217/2=1282.(\sqrt{2})^{17} = 2^{17/2} = 128\sqrt{2}.

Finding the angle:

17π4=4π+π4 (cycle back)17 \frac{\pi}{4} = 4\pi + \frac{\pi}{4} \text{ (cycle back)}

Therefore:

cos(17π4)=cos(π4)=22,cos\left( 17 \frac{\pi}{4} \right) = cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2},

sin(17π4)=sin(π4)=22.sin\left( 17 \frac{\pi}{4} \right) = sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}.

Thus, the polar form becomes:

1282(22+i22)=128+128i.128\sqrt{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = 128 + 128i.

Step 6

Give a geometrical description of the locus of $P$ as $z$ varies.

97%

121 rated

Answer

From the equation:

1z+1zˉ=1,\frac{1}{z} + \frac{1}{\bar{z}} = 1,

we can rearrange as:

z+zˉzzˉ=1\frac{z + \bar{z}}{z\bar{z}} = 1

which represents the real parts of zz where the locus describes the unit circle in the Argand diagram.

Step 7

Explain why $z_2 = \omega z_1$

96%

114 rated

Answer

The complex number ω\omega represents a rotation and scaling on the Argand plane. Since PP, QQ, and RR are on a unit circle, multiplying z1z_1 by ω\omega gives z2z_2. This is due to the angle of 60 degrees corresponding to π3\frac{\pi}{3}.

Step 8

Show that $z_1 z_2 = \omega^2$

99%

104 rated

Answer

Using the property of complex multiplication:

z1z2=z1(ωz1)=ωz12=ω(1)=ω.z_1 z_2 = z_1 (\omega z_1) = \omega |z_1|^2 = \omega (1) = \omega.

Therefore:

z1z2=ω2z_1 z_2 = \omega^2.

Step 9

Show that $z_1$ and $z_2$ are the roots of $z^2 - az - b^2 = 0.$

96%

101 rated

Answer

Given z1z_1 and z2z_2 are roots of the quadratic, we can use Vieta's formulas:

  • The sum of the roots z1+z2=az_1 + z_2 = a

  • The product of the roots z1z2=b2z_1 z_2 = b^2.

Both fit the form since the roots satisfy:

z2(z1+z2)z+z1z2=0.z^2 - (z_1 + z_2)z + z_1 z_2 = 0.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;