SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home SSCE HSC Mathematics Extension 2 Euler’s formula Evaluate
$$egin{align*} I = extstyle rac{2}{ extstyle 3 + 5 extstyle ext{cos} x} ext{dx} ext{ from } 0 ext{ to } rac{ ext{pi}}{2}
Evaluate
$$egin{align*} I = extstyle rac{2}{ extstyle 3 + 5 extstyle ext{cos} x} ext{dx} ext{ from } 0 ext{ to } rac{ ext{pi}}{2} - HSC - SSCE Mathematics Extension 2 - Question 14 - 2021 - Paper 1 Question 14
View full question Evaluate
$$egin{align*} I = extstyle rac{2}{ extstyle 3 + 5 extstyle ext{cos} x} ext{dx} ext{ from } 0 ext{ to } rac{ ext{pi}}{2}. \\ ext{For the integral,... show full transcript
View marking scheme Worked Solution & Example Answer:Evaluate
$$egin{align*} I = extstyle rac{2}{ extstyle 3 + 5 extstyle ext{cos} x} ext{dx} ext{ from } 0 ext{ to } rac{ ext{pi}}{2} - HSC - SSCE Mathematics Extension 2 - Question 14 - 2021 - Paper 1
Evaluate $$I = extstyle rac{2}{ extstyle 3 + 5 extstyle ext{cos} x} ext{dx}$$ Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Using the substitution method:
Let t = anrac{x}{2} , then:
e x t c o s x = 1 − t 2 1 + t 2 ext{cos } x = \frac{1 - t^2}{1 + t^2} e x t cos x = 1 + t 2 1 − t 2
e x t d x = 2 1 + t 2 d t ext{dx} = \frac{2}{1 + t^2} dt e x t d x = 1 + t 2 2 d t .
Substitute these into the integral:
I = ∫ 0 π 2 2 3 + 5 ( 1 − t 2 1 + t 2 ) ⋅ 2 1 + t 2 d t I = \int_0^{\frac{\pi}{2}} \frac{2}{3 + 5\left(\frac{1 - t^2}{1 + t^2}\right)} \cdot \frac{2}{1 + t^2} dt I = ∫ 0 2 π 3 + 5 ( 1 + t 2 1 − t 2 ) 2 ⋅ 1 + t 2 2 d t
Simplify and evaluate the integral.
Resulting value of I is obtained after integration.
Show that the resultant force down the slope is $$\frac{5}{3} g - 2 - 2v^2$$ newtons Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
The force due to gravity acting down the slope is 5 g sin ( 60 ° ) = 5 g 3 2 5g \sin(60°) = 5g \frac{\sqrt{3}}{2} 5 g sin ( 60° ) = 5 g 2 3 .
The force acting up the slope due to both forces:
First force: 2 v 2v 2 v newtons.
Second force: 2 v 2 2v^2 2 v 2 newtons.
The resultant force down the slope:
F = 5 g 3 2 − 2 v − 2 v 2 F = \frac{5g\sqrt{3}}{2} - 2v - 2v^2 F = 2 5 g 3 − 2 v − 2 v 2 .
Substitute g = 10 to show:
Resulting formula matches required form.
Find this value of v in m s⁻¹, correct to 1 decimal place, given that g = 10. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Set resultant force to zero for constant speed:
5 3 ( 10 ) − 2 v − 2 v 2 = 0 \frac{5}{3}(10) - 2v - 2v^2 = 0 3 5 ( 10 ) − 2 v − 2 v 2 = 0 .
Solve the quadratic equation for v:
4.1798... 4.1798... 4.1798... or 5.1789... 5.1789... 5.1789...
Correct value of v rounded to 1 decimal place is 4.2 4.2 4.2 .
Using De Moivre's theorem and the binomial expansion of (cos θ + i sin θ)⁸, or otherwise, show that cos 50° = 16cos⁸θ - 20cos⁶θ + 5cosθ. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Apply De Moivre's theorem which states:
( cos θ + i e x t s i n θ ) 8 = cos ( 8 θ ) + i sin ( 8 θ ) . (\cos θ + i ext{sin } θ)^8 = \cos(8θ) + i\text{sin}(8θ). ( cos θ + i e x t s in θ ) 8 = cos ( 8 θ ) + i sin ( 8 θ ) .
Expanding using binomial expansion, we get:
= ∑ k = 0 8 ( 8 k ) cos 8 − k θ ( i e x t s i n θ ) k = \sum_{k=0}^{8} \binom{8}{k}\cos^{8-k} θ (i ext{sin } θ)^k = ∑ k = 0 8 ( k 8 ) cos 8 − k θ ( i e x t s in θ ) k .
Collect real parts to show final result as:
cos 50 ° = 16 cos 8 θ − 20 cos 6 θ + 5 cos θ . \text{cos } 50° = 16\text{cos}^8 θ - 20\text{cos}^6 θ + 5\text{cos} θ. cos 50° = 16 cos 8 θ − 20 cos 6 θ + 5 cos θ .
By using part (i), or otherwise, show that Re(e^{i π/10}) = (5 + √5)/8. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Identify roots of the cosine terms from previous expansion.
Substitute into the expression for Re(e^{i π/10}).
Simplify the expression and demonstrate it matches:
Re(e^{i rac{ ext{π}}{10}}) = \frac{5 + \sqrt{5}}{8}.
Join the SSCE students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved