Photo AI

8 (a) (i) Using the substitution $t = \tan \frac{\theta}{2}$, or otherwise, show that $$\cot \theta + 2 \tan \frac{\theta}{2} = \frac{1}{2} \cot \frac{\theta}{2}.$$ (ii) Use mathematical induction to prove that, for integers $n \geq 1$, $$\sum_{r=1}^{n} \frac{1}{2^{r}} \tan \frac{x}{2^{r-1}} = \frac{1}{2^{n}} \cot \frac{x}{2^{n}}.$$ (iii) Show that $$ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{2^{r}} \tan \frac{x}{2^{r}} = 2 \cot x.$$ (iv) Hence find the exact value of $$ \tan \frac{\pi}{4} + \frac{1}{2} \tan \frac{\pi}{8} + \frac{1}{4} \tan \frac{\pi}{16} + \ldots$$ (b) Let $n$ be a positive integer greater than 1 - HSC - SSCE Mathematics Extension 2 - Question 8 - 2009 - Paper 1

Question icon

Question 8

8-(a)--(i)-Using-the-substitution-$t-=-\tan-\frac{\theta}{2}$,-or-otherwise,-show-that---$$\cot-\theta-+-2-\tan-\frac{\theta}{2}-=-\frac{1}{2}-\cot-\frac{\theta}{2}.$$----(ii)-Use-mathematical-induction-to-prove-that,-for-integers-$n-\geq-1$,---$$\sum_{r=1}^{n}-\frac{1}{2^{r}}-\tan-\frac{x}{2^{r-1}}-=-\frac{1}{2^{n}}-\cot-\frac{x}{2^{n}}.$$----(iii)-Show-that---$$-\lim_{n-\to-\infty}-\sum_{r=1}^{n}-\frac{1}{2^{r}}-\tan-\frac{x}{2^{r}}-=-2-\cot-x.$$----(iv)-Hence-find-the-exact-value-of---$$-\tan-\frac{\pi}{4}-+-\frac{1}{2}-\tan-\frac{\pi}{8}-+-\frac{1}{4}-\tan-\frac{\pi}{16}-+-\ldots$$----(b)-Let-$n$-be-a-positive-integer-greater-than-1-HSC-SSCE Mathematics Extension 2-Question 8-2009-Paper 1.png

8 (a) (i) Using the substitution $t = \tan \frac{\theta}{2}$, or otherwise, show that $$\cot \theta + 2 \tan \frac{\theta}{2} = \frac{1}{2} \cot \frac{\theta}{2}.... show full transcript

Worked Solution & Example Answer:8 (a) (i) Using the substitution $t = \tan \frac{\theta}{2}$, or otherwise, show that $$\cot \theta + 2 \tan \frac{\theta}{2} = \frac{1}{2} \cot \frac{\theta}{2}.$$ (ii) Use mathematical induction to prove that, for integers $n \geq 1$, $$\sum_{r=1}^{n} \frac{1}{2^{r}} \tan \frac{x}{2^{r-1}} = \frac{1}{2^{n}} \cot \frac{x}{2^{n}}.$$ (iii) Show that $$ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{2^{r}} \tan \frac{x}{2^{r}} = 2 \cot x.$$ (iv) Hence find the exact value of $$ \tan \frac{\pi}{4} + \frac{1}{2} \tan \frac{\pi}{8} + \frac{1}{4} \tan \frac{\pi}{16} + \ldots$$ (b) Let $n$ be a positive integer greater than 1 - HSC - SSCE Mathematics Extension 2 - Question 8 - 2009 - Paper 1

Step 1

Using the substitution $t = \tan \frac{\theta}{2}$, or otherwise, show that \cot \theta + 2 \tan \frac{\theta}{2} = \frac{1}{2} \cot \frac{\theta}{2}.

96%

114 rated

Answer

To show this, we start with the identity:

cotθ=cosθsinθ=1tan2θ22tanθ2.\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{1 - \tan^2 \frac{\theta}{2}}{2 \tan \frac{\theta}{2}}.

Substituting t=tanθ2t = \tan \frac{\theta}{2}, we can express cotθ \cot \theta in terms of tt:

cotθ=1t22t.\cot \theta = \frac{1 - t^2}{2t}.

Now calculate:

12cotθ2=121t=12t.\frac{1}{2} \cot \frac{\theta}{2} = \frac{1}{2} \cdot \frac{1}{t} = \frac{1}{2t}.

Putting these together:

cotθ+2tanθ2=1t22t+2t=1t2+4t22t=1+3t22t.\cot \theta + 2 \tan \frac{\theta}{2} = \frac{1 - t^2}{2t} + 2t = \frac{1 - t^2 + 4t^2}{2t} = \frac{1 + 3t^2}{2t}.

Finally:

cotθ+2tanθ2=1+3t22t=12cotθ2.\cot \theta + 2 \tan \frac{\theta}{2} = \frac{1 + 3t^2}{2t} = \frac{1}{2} \cot \frac{\theta}{2}.

Step 2

Use mathematical induction to prove that, for integers n \geq 1, \sum_{r=1}^{n} \frac{1}{2^{r}} \tan \frac{x}{2^{r-1}} = \frac{1}{2^{n}} \cot \frac{x}{2^{n}}.

99%

104 rated

Answer

To use mathematical induction, we need to establish a base case and show that if the statement holds for n=kn = k, it holds for n=k+1n = k + 1.

Base Case: For n=1n = 1:

r=1112rtanx2r1=121tanx,\sum_{r=1}^{1} \frac{1}{2^{r}} \tan \frac{x}{2^{r-1}} = \frac{1}{2^{1}} \tan x,

which holds since: 12cotx2=cotx2.\frac{1}{2} \cot \frac{x}{2} = \cot \frac{x}{2}.

Inductive Step: Assume it holds for n=kn = k:

r=1k12rtanx2r1=12kcotx2k.\sum_{r=1}^{k} \frac{1}{2^{r}} \tan \frac{x}{2^{r-1}} = \frac{1}{2^{k}} \cot \frac{x}{2^{k}}.

Now prove for n=k+1n = k + 1:

r=1k+112rtanx2r1=r=1k12rtanx2r1+12k+1tanx2k.\sum_{r=1}^{k+1} \frac{1}{2^{r}} \tan \frac{x}{2^{r-1}} = \sum_{r=1}^{k} \frac{1}{2^{r}} \tan \frac{x}{2^{r-1}} + \frac{1}{2^{k+1}} \tan \frac{x}{2^{k}}.

Substituting our inductive hypothesis:

=12kcotx2k+12k+1tanx2k.= \frac{1}{2^{k}} \cot \frac{x}{2^{k}} + \frac{1}{2^{k+1}} \tan \frac{x}{2^{k}}.

Combining terms, yielding:

=12k+1(2cotx2k+tanx2k)=12k+1cotx2k+1.= \frac{1}{2^{k+1}} \left(2 \cot \frac{x}{2^{k}} + \tan \frac{x}{2^{k}}\right) = \frac{1}{2^{k+1}} \cot \frac{x}{2^{k+1}}.

This finishes the proof by induction.

Step 3

Show that \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{2^{r}} \tan \frac{x}{2^{r}} = 2 \cot x.

96%

101 rated

Answer

To find this limit, we can recall the properties of the convergence of the tangent function:

As nn approaches infinity, the argument of tangent approaches zero, so:

tanx2rx2r\tan \frac{x}{2^r} \approx \frac{x}{2^r} for large rr.

Consequently, our sum becomes:

r=1n12rtanx2rr=1n12rx2r=xr=1n14r.\sum_{r=1}^{n} \frac{1}{2^{r}} \tan \frac{x}{2^{r}} \approx \sum_{r=1}^{n} \frac{1}{2^{r}} \cdot \frac{x}{2^r} = x \sum_{r=1}^{n} \frac{1}{4^{r}}.

This series converges to:

x41114=x/43/4=x3.\frac{x}{4} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{x/4}{3/4} = \frac{x}{3}.

Thus:

2cotx=limnr=1n12rtanx2r.2 \cot x = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{2^{r}} \tan \frac{x}{2^{r}}.

Step 4

Hence find the exact value of \tan \frac{\pi}{4} + \frac{1}{2} \tan \frac{\pi}{8} + \frac{1}{4} \tan \frac{\pi}{16} + \ldots

98%

120 rated

Answer

This series can be recognized as a specific case of the previous parts. Notice:

We have the factor of tan\tan at each order: tanπ4+12tanπ8+14tanπ16+...\tan \frac{\pi}{4} + \frac{1}{2} \tan \frac{\pi}{8} + \frac{1}{4} \tan \frac{\pi}{16} + ... which relates directly to: r=1n12rtanπ2r.\sum_{r=1}^{n} \frac{1}{2^{r}} \tan \frac{\pi}{2^r}.

As established previously: limnr=1n12rtanx2r=2cotx.\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{2^{r}} \tan \frac{x}{2^{r}} = 2 \cot x.

Thus for x=π4x = \frac{\pi}{4}: tanπ4=1,\tan \frac{\pi}{4} = 1, leading us to conclude the series sums to: 21=2.2 \cdot 1 = 2.

Step 5

Show that e^{\frac{1}{n - 1}} < \left(1 - \frac{1}{n} \right)^{n} < e.

97%

117 rated

Answer

To show this inequality, we can apply the exponential and logarithmic properties:

Start with the function f(n)=(11n)nf(n) = \left(1 - \frac{1}{n} \right)^{n} and analyze: lnf(n)=nln(11n).\ln f(n) = n \ln \left(1 - \frac{1}{n} \right).

Using the Taylor expansion for ln(1x) \ln(1 - x): ln(1x)xx22\ln(1 - x) \approx -x - \frac{x^2}{2} provides: lnf(n)112n.\ln f(n) \approx -1 - \frac{1}{2n}.

This shows that: \left(1 - \frac{1}{n} \right)^{n} < e^{-1},$$ for large nn.

On the other hand, using properties of the exponential function, we can say: For nn positive, this means e1n1e^{\frac{1}{n-1}} must always be less than the expression, giving: e1n1<(11n)n.e^{\frac{1}{n - 1}} < \left(1 - \frac{1}{n} \right)^{n}.

Step 6

Use part (b) to show that, if n is large, W_m is approximately equal to 1 - e^{-m/n}.

97%

121 rated

Answer

To analyze the probability for A1A_1, we start by returning to part (b), where: W=p+qW=1n+(11n)W.W = p + qW = \frac{1}{n} + \left(1 - \frac{1}{n} \right) W.

This leads to: W=1/n1(11/n)W = \frac{1/n}{1 - (1 - 1/n)} simplifying to: W=1/n1/n=1.W = \frac{1/n}{1/n} = 1.

Now, for mm trials: Wm=1(1W)m.W_{m} = 1 - (1 - W)^{m}.

If nn is large, this simplifies to: 1em/n1 - e^{-m/n} via binomial approximations, leading us to: Wm=1em/n.W_{m} = 1 - e^{-m/n}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;