Photo AI

Use the Question 12 Writing Booklet (a) The vector $\mathbf{a}$ is $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and the vector $\mathbf{b}$ is $\begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix}$ - HSC - SSCE Mathematics Extension 2 - Question 12 - 2024 - Paper 1

Question icon

Question 12

Use-the-Question-12-Writing-Booklet--(a)-The-vector-$\mathbf{a}$-is-$\begin{pmatrix}-1-\\-2-\\-3-\end{pmatrix}$-and-the-vector-$\mathbf{b}$-is-$\begin{pmatrix}-2-\\-0-\\--4-\end{pmatrix}$-HSC-SSCE Mathematics Extension 2-Question 12-2024-Paper 1.png

Use the Question 12 Writing Booklet (a) The vector $\mathbf{a}$ is $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and the vector $\mathbf{b}$ is $\begin{pmatrix} 2 \\ ... show full transcript

Worked Solution & Example Answer:Use the Question 12 Writing Booklet (a) The vector $\mathbf{a}$ is $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and the vector $\mathbf{b}$ is $\begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix}$ - HSC - SSCE Mathematics Extension 2 - Question 12 - 2024 - Paper 1

Step 1

Find $\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b}$

96%

114 rated

Answer

To find this quantity, we first need to compute the dot product of a\mathbf{a} and b\mathbf{b}:

ab=(123)(204)=12+20+3(4)=2+012=10.\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix} = 1 \cdot 2 + 2 \cdot 0 + 3 \cdot (-4) = 2 + 0 - 12 = -10.

Next, we calculate bb\mathbf{b} \cdot \mathbf{b}:

bb=(204)(204)=22+00+(4)(4)=4+0+16=20.\mathbf{b} \cdot \mathbf{b} = \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix} = 2 \cdot 2 + 0 \cdot 0 + (-4) \cdot (-4) = 4 + 0 + 16 = 20.

Now we can substitute these values into the formula:

abbbb=1020(204)=12(204)=(102).\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} = \frac{-10}{20} \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}.

Step 2

Show that $\mathbf{a} - \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b}$ is perpendicular to $\mathbf{b}$

99%

104 rated

Answer

We need to show that the resulting vector is orthogonal to b\mathbf{b}. We start from:

c=aabbbb=(123)(102)=(221).\mathbf{c} = \mathbf{a} - \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}.

Now to confirm that c\mathbf{c} is perpendicular to b\mathbf{b}, we compute:

cb=(221)(204)=22+20+1(4)=4+04=0.\mathbf{c} \cdot \mathbf{b} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix} = 2 \cdot 2 + 2 \cdot 0 + 1 \cdot (-4) = 4 + 0 - 4 = 0.

Since the dot product is zero, this proves that c\mathbf{c} is perpendicular to b\mathbf{b}.

Step 3

Use partial fractions to find \( \int \frac{3x^2 + 2x + 1}{(x - 1)(x + 1)} \, dx \)

96%

101 rated

Answer

To evaluate the integral, we first express the integrand using partial fractions:

3x2+2x+1(x1)(x+1)=Ax1+Bx+1.\frac{3x^2 + 2x + 1}{(x - 1)(x + 1)} = \frac{A}{x - 1} + \frac{B}{x + 1}.

Multiplying both sides by (x1)(x+1) (x - 1)(x + 1) gives:

3x2+2x+1=A(x+1)+B(x1).3x^2 + 2x + 1 = A(x + 1) + B(x - 1).

Expanding the right side:

=Ax+A+BxB=(A+B)x+(AB).= Ax + A + Bx - B = (A + B)x + (A - B).

Setting coefficients equal:

  1. A+B=3A + B = 3
  2. AB=1A - B = 1

Solving this system:

  • Adding the two equations gives 2A=42A = 4
  • Therefore A=2A = 2.
  • Substituting AA into the first equation gives 2+B=32 + B = 3, hence B=1B = 1.

Now substituting back:

(2x1+1x+1)dx=2lnx1+lnx+1+C.\int \left( \frac{2}{x - 1} + \frac{1}{x + 1} \right) dx = 2 \ln |x - 1| + \ln |x + 1| + C.

Step 4

Explain why $b = -12$

98%

120 rated

Answer

Given the equation z=z+8+12i|z| = |z + 8 + 12i|, we set z=a+biz = a + bi. Thus, we have: a+bi=(a+8)+(b+12)i.|a + bi| = |(a + 8) + (b + 12)i|.

The magnitudes give: a2+b2=(a+8)2+(b+12)2.\sqrt{a^2 + b^2} = \sqrt{(a + 8)^2 + (b + 12)^2}.

Squaring both sides: a2+b2=(a+8)2+(b+12)2.a^2 + b^2 = (a + 8)^2 + (b + 12)^2.

Expanding the right side leads to: a2+b2=a2+16a+64+b2+24b+144.a^2 + b^2 = a^2 + 16a + 64 + b^2 + 24b + 144.

The terms a2a^2 and b2b^2 cancel: 0=16a+24b+208.0 = 16a + 24b + 208.

Rearranging gives: 24b=16a208b=23a20824=23a526.24b = -16a - 208 \Rightarrow b = -\frac{2}{3}a - \frac{208}{24} = -\frac{2}{3}a - \frac{52}{6}.

Since bb must be real, plug in suitable values. Assuming a=0a = 0, we find b=12b = -12.

Step 5

Hence, or otherwise, find $z$

97%

117 rated

Answer

With b=12b = -12, we can substitute back into zz. So: $$z = a - 12i.$

To find z|z|, we consider: z2=a2+(12)2=a2+144.|z|^2 = a^2 + (-12)^2 = a^2 + 144.

We also have: z+8+12i2=(a+8)+0i2=(a+8)2.|z + 8 + 12i|^2 = |(a + 8) + 0i|^2 = (a + 8)^2.

Equating the two modulus equations: a2+144=(a+8)2.a^2 + 144 = (a + 8)^2.

This expands into: a2+144=a2+16a+64.a^2 + 144 = a^2 + 16a + 64.

Therefore: 144=16a+64    80=16a    a=5.144 = 16a + 64 \implies 80 = 16a \implies a = 5.

Thus, we find: $$z = 5 - 12i.$

Step 6

Explain why there is no integer $n$ such that $(n + 1)^{14} - 79n^{40} = 2$

97%

121 rated

Answer

First, observe the left-hand side (n+1)1479n40.(n + 1)^{14} - 79n^{40}.

For large values of nn, n40n^{40} dominates the expression.

  • If nn is odd, (n+1)(n + 1) is even, so exteven14 ext{even}^{14} is even.
  • 79n4079n^{40} is odd for odd nn.

This implies the whole expression is odd, hence cannot be 2 (even).

Conversely, if nn is even, (n+1)(n + 1) is odd.

Then, extodd14 ext{odd}^{14} is odd, while 79n4079n^{40} remains even, making the whole expression odd again.

In either case, the left side cannot be 2, proving no integers satisfy the equation.

Step 7

Find a vector equation of the line $\ell$

96%

114 rated

Answer

To find a vector equation for the line passing through points A(3,5,4)A(3, 5, -4) and B(7,0,2)B(7, 0, 2), we first calculate the direction vector:

d=(73052(4))=(456).\mathbf{d} = \begin{pmatrix} 7 - 3 \\ 0 - 5 \\ 2 - (-4) \end{pmatrix} = \begin{pmatrix} 4 \\ -5 \\ 6 \end{pmatrix}.

The line equation can be presented as: :(xyz)=(354)+λ(456),  λR.\ell: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -5 \\ 6 \end{pmatrix}, \; \lambda \in \mathbb{R}.

Step 8

Determine, giving reasons, whether the point $(10, 5, -2)$ lies on the line $\ell$

99%

104 rated

Answer

To check if (10,5,2)(10, 5, -2) lies on the line \ell, substitute into the line equation: (1052)=(3+4λ55λ4+6λ).\begin{pmatrix} 10 \\ 5 \\ -2 \end{pmatrix} = \begin{pmatrix} 3 + 4\lambda \\ 5 - 5\lambda \\ -4 + 6\lambda \end{pmatrix}.

From this, we obtain three equations:

  1. 10=3+4λ4λ=7λ=74.10 = 3 + 4\lambda \Rightarrow 4\lambda = 7 \Rightarrow \lambda = \frac{7}{4}.
  2. 5=55λ5λ=0λ=0.5 = 5 - 5\lambda \Rightarrow -5\lambda = 0 \Rightarrow \lambda = 0.
  3. 2=4+6λ6λ=2λ=13.-2 = -4 + 6\lambda \Rightarrow 6\lambda = 2 \Rightarrow \lambda = \frac{1}{3}.

Since we have inconsistent values for λ\lambda, the point (10,5,2)(10, 5, -2) does not lie on the line \ell.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;