Photo AI

a) Express $\frac{3 - i}{2 + i}$ in the form $x + iy$, where $x$ and $y$ are real numbers - HSC - SSCE Mathematics Extension 2 - Question 11 - 2022 - Paper 1

Question icon

Question 11

a)-Express-$\frac{3---i}{2-+-i}$-in-the-form-$x-+-iy$,-where-$x$-and-$y$-are-real-numbers-HSC-SSCE Mathematics Extension 2-Question 11-2022-Paper 1.png

a) Express $\frac{3 - i}{2 + i}$ in the form $x + iy$, where $x$ and $y$ are real numbers. b) Evaluate $\sin^2 2x \cos 2x \, dx$. c) i) Write the complex number $-... show full transcript

Worked Solution & Example Answer:a) Express $\frac{3 - i}{2 + i}$ in the form $x + iy$, where $x$ and $y$ are real numbers - HSC - SSCE Mathematics Extension 2 - Question 11 - 2022 - Paper 1

Step 1

Express $\frac{3 - i}{2 + i}$ in the form $x + iy$

96%

114 rated

Answer

To express 3i2+i\frac{3 - i}{2 + i} in the form x+iyx + iy, multiply the numerator and denominator by the conjugate of the denominator. Thus:

3i2+i2i2i=(3i)(2i)(2+i)(2i)\frac{3 - i}{2 + i} \cdot \frac{2 - i}{2 - i} = \frac{(3 - i)(2 - i)}{(2 + i)(2 - i)}

Calculating the denominator:

(2+i)(2i)=4+1=5(2 + i)(2 - i) = 4 + 1 = 5

Calculating the numerator:

(3i)(2i)=63i2i+i2=65i1=55i(3 - i)(2 - i) = 6 - 3i - 2i + i^2 = 6 - 5i - 1 = 5 - 5i

So, we have:

55i5=1i,\frac{5 - 5i}{5} = 1 - i, where x=1x = 1 and y=1y = -1.

Step 2

Evaluate $\sin^2 2x \cos 2x \, dx$

99%

104 rated

Answer

To evaluate the integral sin22xcos2xdx\sin^2 2x \cos 2x \, dx, we can use the substitution method. Let:

u=sin2xdu=2cos2xdxdu2=cos2xdx u = \sin 2x \quad \Rightarrow \quad du = 2\cos 2x \, dx \Rightarrow \frac{du}{2} = \cos 2x \, dx

Thus:

sin22xcos2xdx=12u2du=12u33+C=16sin32x+C.\int \sin^2 2x \cos 2x \, dx = \frac{1}{2} \int u^2 du = \frac{1}{2} \cdot \frac{u^3}{3} + C = \frac{1}{6} \sin^3 2x + C.

Step 3

Write the complex number $-\sqrt{3} + i$ in exponential form

96%

101 rated

Answer

To write the complex number 3+i-\sqrt{3} + i in exponential form, we find the modulus and argument:

The modulus is: r=3+i=(3)2+12=3+1=2.r = | -\sqrt{3} + i | = \sqrt{(-\sqrt{3})^2 + 1^2} = \sqrt{3 + 1} = 2.

The argument is: θ=tan1(13)=5π6.\theta = \tan^{-1}\left(\frac{1}{-\sqrt{3}}\right) = \frac{5\pi}{6}.

Thus, the exponential form is: 2ei5π6.2 \text{e}^{i \frac{5\pi}{6}}.

Step 4

Hence, find the exact value of $( -\sqrt{3} + i)^{10}$

98%

120 rated

Answer

Using the exponential form found previously: (3+i)10=(2ei5π6)10=210ei25π3(-\sqrt{3} + i)^{10} = (2 \text{e}^{i \frac{5\pi}{6}})^{10} = 2^{10} \text{e}^{i \frac{25\pi}{3}}

We must reduce the argument: 25π3=8π+1π3=π3.\frac{25\pi}{3} = 8\pi + \frac{1\pi}{3} = \frac{\pi}{3}.

Therefore: (3+i)10=1024eiπ3=1024(cosπ3+isinπ3)=1024(12+i32)=512+512i.(-\sqrt{3} + i)^{10} = 1024 \text{e}^{i \frac{\pi}{3}} = 1024 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}\right) = 1024 \left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) = 512 + 512i.

Step 5

Find the size of $\angle ABC$

97%

117 rated

Answer

Let ( \vec{a} = B - A = (0, 2, -1) - (1, -1, 2) = (-1, 3, -3) ) and ( \vec{b} = C - B = (2, 1, 1) - (0, 2, -1) = (2, -1, 2) ).

Calculating the dot product: ab=(1)(2)+(3)(1)+(3)(2)=236=11.\vec{a} \cdot \vec{b} = (-1)(2) + (3)(-1) + (-3)(2) = -2 - 3 - 6 = -11.

Finding magnitudes: a=(1)2+32+(3)2=1+9+9=19|\vec{a}| = \sqrt{(-1)^2 + 3^2 + (-3)^2} = \sqrt{1 + 9 + 9} = \sqrt{19} b=22+(1)2+22=4+1+4=3.|\vec{b}| = \sqrt{2^2 + (-1)^2 + 2^2} = \sqrt{4 + 1 + 4} = 3.

Using the cosine rule: cosABC=abab=11193.\cos \angle ABC = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{-11}{\sqrt{19} \cdot 3}.

Thus: ABC=cos1(11319).\angle ABC = \cos^{-1}\left(\frac{-11}{3\sqrt{19}}\right).

Step 6

Find the equation of the line $\ell_2$

97%

121 rated

Answer

Since line 2\ell_2 is parallel to 1\ell_1 and passes through point A(6,5)A(-6, 5), we can use the slope from 1\ell_1 to find the equation of 2\ell_2. The direction vector of 1\ell_1 is (3,2)(3, 2), giving a slope: m=23.m = \frac{2}{3}.

Using the point-slope form yy1=m(xx1)y - y_1 = m(x - x_1): y5=23(x+6).y - 5 = \frac{2}{3}(x + 6).

This simplifies to: y5=23x+4y=23x+9.y - 5 = \frac{2}{3}x + 4 \Rightarrow y = \frac{2}{3}x + 9.

Step 7

Find $\int\frac{dx}{1 + \cos x - \sin x}$ using the substitution $t = \tan \frac{x}{2}$

96%

114 rated

Answer

Using the Weierstrass substitution: dx=2dt1+t2,dx = \frac{2 \, dt}{1 + t^2}, cosx=1t21+t2,sinx=2t1+t2.\cos x = \frac{1 - t^2}{1 + t^2}, \, \sin x = \frac{2t}{1 + t^2}.

Substituting in the integral: dx1+cosxsinx=21+t2dt1+1t21+t22t1+t2\int \frac{dx}{1 + \cos x - \sin x} = \int \frac{\frac{2}{1+t^2} dt}{1 + \frac{1 - t^2}{1 + t^2} - \frac{2t}{1 + t^2}}

This simplifies to: 2dt3+t22t.\int \frac{2 \, dt}{3 + t^2 - 2t}.

To find anti-derivatives, you can complete the square, yielding the final result.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;