Photo AI

Find $$ rac{ ext{ln} x}{x} \, dx.$$ Find $$ ext{e}^{2x} \, dx.$$ Find $$ rac{x^2}{1 + 4x^2} \, dx.$$ Evaluate $$ rac{ ext{5}}{2} rac{x - 6}{x^2 + 3x - 4} \, dx.$$ Evaluate $$ rac{ ext{3}}{1 + x^2} \, dx.$$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2009 - Paper 1

Question icon

Question 1

Find--$$-rac{-ext{ln}-x}{x}-\,-dx.$$---Find--$$-ext{e}^{2x}-\,-dx.$$---Find--$$-rac{x^2}{1-+-4x^2}-\,-dx.$$---Evaluate--$$-rac{-ext{5}}{2}--rac{x---6}{x^2-+-3x---4}-\,-dx.$$---Evaluate--$$-rac{-ext{3}}{1-+-x^2}-\,-dx.$$-HSC-SSCE Mathematics Extension 2-Question 1-2009-Paper 1.png

Find $$ rac{ ext{ln} x}{x} \, dx.$$ Find $$ ext{e}^{2x} \, dx.$$ Find $$ rac{x^2}{1 + 4x^2} \, dx.$$ Evaluate $$ rac{ ext{5}}{2} rac{x - 6}{x^2 + 3x - 4} ... show full transcript

Worked Solution & Example Answer:Find $$ rac{ ext{ln} x}{x} \, dx.$$ Find $$ ext{e}^{2x} \, dx.$$ Find $$ rac{x^2}{1 + 4x^2} \, dx.$$ Evaluate $$ rac{ ext{5}}{2} rac{x - 6}{x^2 + 3x - 4} \, dx.$$ Evaluate $$ rac{ ext{3}}{1 + x^2} \, dx.$$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2009 - Paper 1

Step 1

Find \( \int \frac{\text{ln} x}{x} \, dx \)

96%

114 rated

Answer

To find the integral ( I = \int \frac{\text{ln} x}{x} , dx ), we use substitution. Let ( u = \text{ln} x ), then ( du = \frac{1}{x} , dx ). The integral becomes ( I = \int u , du = \frac{u^2}{2} + C = \frac{(\text{ln} x)^2}{2} + C ).

Step 2

Find \( \int \text{e}^{2x} \, dx \)

99%

104 rated

Answer

For the integral ( \int \text{e}^{2x} , dx ), we can use substitution. Let ( u = 2x ), then ( du = 2 , dx ) or ( dx = \frac{du}{2} ). This changes the integral to ( \frac{1}{2} \int \text{e}^u , du = \frac{1}{2} \text{e}^u + C = \frac{1}{2} \text{e}^{2x} + C ).

Step 3

Find \( \int \frac{x^2}{1 + 4x^2} \, dx \)

96%

101 rated

Answer

To evaluate the integral, we rewrite it as ( \int \frac{x^2}{1 + 4x^2} , dx = \int \left( \frac{1}{4} - \frac{1}{4(1 + 4x^2)} \right) , dx ). The first term equals ( \frac{1}{4}x ) and the second term can be integrated as follows: ( -\frac{1}{4} \int \frac{1}{1 + 4x^2} , dx = -\frac{1}{8} \text{arctan}(2x) + C ). Thus, the final result is: ( \frac{x}{4} - \frac{1}{8} \text{arctan}(2x) + C ).

Step 4

Evaluate \( \int \frac{5}{x^2 + 3x - 4} \, dx \)

98%

120 rated

Answer

We begin by factoring the denominator: ( x^2 + 3x - 4 = (x + 4)(x - 1) ). This allows us to perform partial fraction decomposition: ( \frac{5}{(x + 4)(x - 1)} = \frac{A}{x + 4} + \frac{B}{x - 1} ). Solving gives: ( A = 1, B = 4 ). Now integrating: ( \int \left( \frac{1}{x + 4} + \frac{4}{x - 1} \right) dx = \ln |x + 4| + 4 \ln |x - 1| + C ).

Step 5

Evaluate \( \int \frac{3}{1 + x^2} \, dx \)

97%

117 rated

Answer

This integral is straightforward since ( \int \frac{1}{1 + x^2} , dx = \text{arctan}(x) + C ). Hence, multiplying by 3 gives: ( 3 \int \frac{1}{1 + x^2} , dx = 3 \text{arctan}(x) + C ).

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;