Photo AI

Find $$ \int \frac{\cos \theta}{\sin^2 \theta} \, d\theta $$ (ii) Find real numbers \( a \) and \( b \) such that $$ \frac{5x}{x^2 - x - 6} = \frac{a}{x - 3} + \frac{b}{x + 2} $$ (iii) Hence find $$ \int \frac{5x}{x^2 - x - 6} \, dx $$ (c) Use integration by parts to evaluate $$ \int_1^e x^7 log_e x \, dx $$ (d) Using the table of standard integrals, or otherwise, find $$ \int \frac{dx}{\sqrt{4x^2 - 1}} $$ (e) Let \( t = \tan \frac{\theta}{2} $$ (i) Show that $$ \frac{dt}{d\theta} = \frac{1}{2}(1 + t^2) $$ (ii) Show that $$ \sin \theta = \frac{2t}{1 + t^2} $$ (iii) Use the substitution \( t = \tan \frac{\theta}{2} $$ to find $$ \int \csc \theta \, d\theta $$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2005 - Paper 1

Question icon

Question 1

Find--$$-\int-\frac{\cos-\theta}{\sin^2-\theta}-\,-d\theta-$$--(ii)-Find-real-numbers-\(-a-\)-and-\(-b-\)-such-that--$$-\frac{5x}{x^2---x---6}-=-\frac{a}{x---3}-+-\frac{b}{x-+-2}-$$--(iii)-Hence-find--$$-\int-\frac{5x}{x^2---x---6}-\,-dx-$$--(c)-Use-integration-by-parts-to-evaluate--$$-\int_1^e-x^7-log_e-x-\,-dx-$$--(d)-Using-the-table-of-standard-integrals,-or-otherwise,-find--$$-\int-\frac{dx}{\sqrt{4x^2---1}}-$$--(e)-Let-\(-t-=-\tan-\frac{\theta}{2}-$$--(i)-Show-that--$$-\frac{dt}{d\theta}-=-\frac{1}{2}(1-+-t^2)-$$--(ii)-Show-that--$$-\sin-\theta-=-\frac{2t}{1-+-t^2}-$$--(iii)-Use-the-substitution-\(-t-=-\tan-\frac{\theta}{2}-$$-to-find--$$-\int-\csc-\theta-\,-d\theta-$$-HSC-SSCE Mathematics Extension 2-Question 1-2005-Paper 1.png

Find $$ \int \frac{\cos \theta}{\sin^2 \theta} \, d\theta $$ (ii) Find real numbers \( a \) and \( b \) such that $$ \frac{5x}{x^2 - x - 6} = \frac{a}{x - 3} + \f... show full transcript

Worked Solution & Example Answer:Find $$ \int \frac{\cos \theta}{\sin^2 \theta} \, d\theta $$ (ii) Find real numbers \( a \) and \( b \) such that $$ \frac{5x}{x^2 - x - 6} = \frac{a}{x - 3} + \frac{b}{x + 2} $$ (iii) Hence find $$ \int \frac{5x}{x^2 - x - 6} \, dx $$ (c) Use integration by parts to evaluate $$ \int_1^e x^7 log_e x \, dx $$ (d) Using the table of standard integrals, or otherwise, find $$ \int \frac{dx}{\sqrt{4x^2 - 1}} $$ (e) Let \( t = \tan \frac{\theta}{2} $$ (i) Show that $$ \frac{dt}{d\theta} = \frac{1}{2}(1 + t^2) $$ (ii) Show that $$ \sin \theta = \frac{2t}{1 + t^2} $$ (iii) Use the substitution \( t = \tan \frac{\theta}{2} $$ to find $$ \int \csc \theta \, d\theta $$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2005 - Paper 1

Step 1

Find \( \int \frac{\cos \theta}{\sin^2 \theta} \, d\theta \)

96%

114 rated

Answer

To solve the integral, we can use the substitution ( u = \sin \theta ). Therefore, ( du = \cos \theta , d\theta ). The integral becomes:

1u2du=1u+C=1sinθ+C\int \frac{1}{u^2} \, du = -\frac{1}{u} + C = -\frac{1}{\sin \theta} + C

Step 2

Find real numbers \( a \) and \( b \) such that \( \frac{5x}{x^2 - x - 6} = \frac{a}{x - 3} + \frac{b}{x + 2} \)

99%

104 rated

Answer

To find ( a ) and ( b ), we equate coefficients:

  1. ( a + b = 5 )
  2. ( -3a + 2b = -1 )

Solving these equations, we get ( a = 2 ) and ( b = 3 ).

Step 3

Hence find \( \int \frac{5x}{x^2 - x - 6} \, dx \)

96%

101 rated

Answer

Using the values of ( a ) and ( b ) found earlier, we have:

(2x3+3x+2)dx=2lnx3+3lnx+2+C\int \left( \frac{2}{x - 3} + \frac{3}{x + 2} \right) \, dx = 2 \ln |x - 3| + 3 \ln |x + 2| + C. This simplifies to: ln(x3)2(x+2)3+C\ln |(x - 3)^2 (x + 2)^3| + C

Step 4

Use integration by parts to evaluate \( \int_1^e x^7 log_e x \, dx \)

98%

120 rated

Answer

Let ( u = log_e x ) and ( dv = x^7 , dx ). Then, ( du = \frac{1}{x} , dx ) and ( v = \frac{x^8}{8} ). Using integration by parts:

udv=uvvdu\int u \, dv = uv - \int v \, du

Substituting the values, we get:

[logexx88]1ex881xdx\left[ log_e x \cdot \frac{x^8}{8} \right]_1^e - \int \frac{x^8}{8} \cdot \frac{1}{x} \, dx. Evaluating gives: 18(e810)18x7dx=18(e80).\frac{1}{8} (e^8 \cdot 1 - 0) - \frac{1}{8} \int x^7 \, dx = \frac{1}{8} (e^8 - 0).

Step 5

Using the table of standard integrals, or otherwise, find \( \int \frac{dx}{\sqrt{4x^2 - 1}} \)

97%

117 rated

Answer

This integral can be solved using a standard integral formula:

dxa2x2=arcsin(xa)+C\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \left( \frac{x}{a} \right) + C

Here, setting ( a = 2 ), we can write: dx4x21=12ln2x+4x21+C\int \frac{dx}{\sqrt{4x^2 - 1}} = \frac{1}{2} \ln \left| 2x + \sqrt{4x^2 - 1} \right| + C.

Step 6

Show that \( \frac{dt}{d\theta} = \frac{1}{2}(1 + t^2) \)

97%

121 rated

Answer

Using the chain rule, differentiate ( t = \tan \frac{\theta}{2} ):

dtdθ=12sec2θ2\frac{dt}{d\theta} = \frac{1}{2} sec^2 \frac{\theta}{2}

Since ( sec^2 x = 1 + tan^2 x ), we have:

dtdθ=12(1+tan2θ2)=12(1+t2).\frac{dt}{d\theta} = \frac{1}{2} (1 + tan^2 \frac{\theta}{2}) = \frac{1}{2} (1 + t^2).

Step 7

Show that \( \sin \theta = \frac{2t}{1 + t^2} \)

96%

114 rated

Answer

Using the double angle formula for sine, we have:

sinθ=2tanθ21+tan2θ2=2t1+t2.\sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}} = \frac{2t}{1 + t^2}.

Step 8

Use the substitution \( t = \tan \frac{\theta}{2} \) to find \( \int \csc \theta \, d\theta \)

99%

104 rated

Answer

Noting that:

cscθ=1sinθ=1+t22t\csc \theta = \frac{1}{\sin \theta} = \frac{1 + t^2}{2t}

Using the substitution:

dθ=21+t2dtd\theta = \frac{2}{1 + t^2} dt

Thus:

cscθdθ=(1+t2)2t21+t2dt=1tdt=lnt+C=lntanθ2+C\int \csc \theta \, d\theta = \int \frac{(1 + t^2)}{2t} \cdot \frac{2}{1 + t^2} dt = \int \frac{1}{t} dt = \ln |t| + C = \ln |tan \frac{\theta}{2}| + C.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;