Photo AI

Use integration by parts to find $\, \int xe^{x}dx$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2004 - Paper 1

Question icon

Question 1

Use-integration-by-parts-to-find-$\,-\int-xe^{x}dx$-HSC-SSCE Mathematics Extension 2-Question 1-2004-Paper 1.png

Use integration by parts to find $\, \int xe^{x}dx$. Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\cos^{3} x} \, dx$. By completing the square, find $\int \... show full transcript

Worked Solution & Example Answer:Use integration by parts to find $\, \int xe^{x}dx$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2004 - Paper 1

Step 1

Use integration by parts to find $\int xe^{x}dx$

96%

114 rated

Answer

To solve xexdx\int xe^{x}dx, we employ integration by parts, using the formula udv=uvvdu\int u \, dv = uv - \int v \, du, where we choose:

  • u=xu = x ( \Rightarrow , du = dx$
  • dv=exdxdv = e^{x}dx ( \Rightarrow , v = e^{x}$

Thus,

xexdx=xexexdx=xexex+C=(x1)ex+C.\int xe^{x}dx = xe^{x} - \int e^{x}dx = xe^{x} - e^{x} + C = (x-1)e^{x} + C.

Step 2

Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\cos^{3} x} \, dx$

99%

104 rated

Answer

To evaluate 0π2sinxcos3xdx\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\cos^{3} x} \, dx, we can use the substitution u=cosxu = \cos x, thus:

  • du=sinxdxdu = -\sin x \, dx
  • The limits change: When x=0,u=1x = 0, u = 1 and when x=π2,u=0x = \frac{\pi}{2}, u = 0.

This gives:

101u3du=011u3du.\int_{1}^{0} \frac{-1}{u^{3}} du = \int_{0}^{1} \frac{1}{u^{3}} du.

Calculating the integral:

=[12u2]01=(12(1)2)(0)=12.= \left[-\frac{1}{2u^{2}}\right]_{0}^{1} = \left( -\frac{1}{2(1)^{2}} \right) - (0) = -\frac{1}{2}.

Step 3

By completing the square, find $\int \frac{dx}{\sqrt{5+4x-x^{2}}}$

96%

101 rated

Answer

To complete the square for 5+4xx25 + 4x - x^{2}, we rewrite it as:

5+4xx2=(x24x5)=((x2)29)=9(x2)2.5 + 4x - x^{2} = -(x^{2} - 4x - 5) = -\left((x-2)^{2} - 9\right) = 9 - (x-2)^{2}.

Thus, we have:

dx9(x2)2.\int \frac{dx}{\sqrt{9 - (x-2)^{2}}}.

Using the substitution u=x2u = x - 2 gives:

du9u2,\int \frac{du}{\sqrt{9 - u^{2}}},

which results in:

=sin1(u3)+C=sin1(x23)+C.= \sin^{-1} \left( \frac{u}{3} \right) + C = \sin^{-1} \left( \frac{x-2}{3} \right) + C.

Step 4

Find real numbers $a$ and $b$ such that: \[ \frac{x^{2}-7x+4}{(x+1)(x-1)^{2}} = \frac{a}{x+1} + \frac{b}{x-1} - \frac{1}{(x-1)^{2}} \]

98%

120 rated

Answer

To find aa and bb, first equate the coefficients of the left and right hand sides after bringing everything over to one side, giving a common denominator of (x+1)(x1)2(x+1)(x-1)^{2}. Hence,

x27x+4(x+1)(x1)2=a(x1)2+b(x+1)(x1)1(x+1)(x+1)(x1)2.\frac{x^{2}-7x+4}{(x+1)(x-1)^{2}} = \frac{a(x-1)^{2} + b(x+1)(x-1) - 1(x+1)}{(x+1)(x-1)^{2}}.

Expanding and solving for aa and bb, set coefficients equal:

  1. a+b1=1a + b - 1= 1 (coefficient of x2x^{2})
  2. 2a+b7=7-2a + b - 7 = -7 (coefficient of x1x^{1})
  3. ab+4=4a - b + 4 = 4 (constant term)

Solving these simultaneously gives a=2a = 2 and b=1b = 1.

Step 5

Hence find $\int \frac{x^{2}-7x+4}{(x+1)(x-1)^{2}} \, dx$

97%

117 rated

Answer

Using the values found previously (a=2a = 2, b=1b = 1), we rewrite the integral as:

(2x+1+1x11(x1)2)dx.\int \left( \frac{2}{x+1} + \frac{1}{x-1} - \frac{1}{(x-1)^{2}} \right) \, dx.

Calculating each term individually, we have:

  1. 2x+1dx=2lnx+1+C1\int \frac{2}{x+1} \, dx = 2 \ln |x+1| + C_{1}
  2. 1x1dx=lnx1+C2\int \frac{1}{x-1} \, dx = \ln |x-1| + C_{2}
  3. 1(x1)2dx=1x1+C3\int -\frac{1}{(x-1)^{2}} \, dx = \frac{1}{x-1} + C_{3}

Combining the results:

$$\int \frac{x^{2}-7x+4}{(x+1)(x-1)^{2}} , dx = 2\ln |x+1| + \ln |x-1| + \frac{1}{x-1} + C.$

Step 6

Use the substitution $x=2\sin\theta$ to find $\int_{0}^{\frac{x^{2}}{4-x^{2}}} dx$

97%

121 rated

Answer

To solve the integral using the substitution x=2sinθx = 2\sin\theta, we have:

  • dx=2cosθdθdx = 2\cos\theta \, d\theta.
  • Changing the limits accordingly:
    • When x=0x=0, θ=0\theta=0; when x=2x=2, θ=π2\theta=\frac{\pi}{2}.

Substituting into the integral:

Calculating gives:

$$= 2\left[\sin\theta\right]_{0}^{\frac{\pi}{2}} = 2(1 - 0) = 2.$

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;