Photo AI

Find $$\int \frac{x^2}{(5+x^2)^2} \, dx.$$ Find $$\int \frac{dx}{\sqrt{4x^2+1}}.$$ Evaluate $$\int_0^1 \tan^{-1}(x) \, dx.$$ Evaluate $$\int_2^2 \frac{dx}{\sqrt{2x-1}}.$$ It can be shown that $$\frac{8(1-x)}{(2-x^2)(2-2x+x^2)} = \frac{4-2x}{2-2x+x^2}-\frac{2x}{2-x^2} .\ (Do NOT prove this.)$$ Use this result to evaluate $$\int_0^1 \frac{8(1-x)}{(2-x^2)(2-2x+x^2)} \, dx.$$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2008 - Paper 1

Question icon

Question 1

Find-$$\int-\frac{x^2}{(5+x^2)^2}-\,-dx.$$---Find-$$\int-\frac{dx}{\sqrt{4x^2+1}}.$$---Evaluate-$$\int_0^1-\tan^{-1}(x)-\,-dx.$$---Evaluate-$$\int_2^2-\frac{dx}{\sqrt{2x-1}}.$$---It-can-be-shown-that-$$\frac{8(1-x)}{(2-x^2)(2-2x+x^2)}-=-\frac{4-2x}{2-2x+x^2}-\frac{2x}{2-x^2}-.\-(Do-NOT-prove-this.)$$--Use-this-result-to-evaluate-$$\int_0^1-\frac{8(1-x)}{(2-x^2)(2-2x+x^2)}-\,-dx.$$-HSC-SSCE Mathematics Extension 2-Question 1-2008-Paper 1.png

Find $$\int \frac{x^2}{(5+x^2)^2} \, dx.$$ Find $$\int \frac{dx}{\sqrt{4x^2+1}}.$$ Evaluate $$\int_0^1 \tan^{-1}(x) \, dx.$$ Evaluate $$\int_2^2 \frac{dx}{\sqr... show full transcript

Worked Solution & Example Answer:Find $$\int \frac{x^2}{(5+x^2)^2} \, dx.$$ Find $$\int \frac{dx}{\sqrt{4x^2+1}}.$$ Evaluate $$\int_0^1 \tan^{-1}(x) \, dx.$$ Evaluate $$\int_2^2 \frac{dx}{\sqrt{2x-1}}.$$ It can be shown that $$\frac{8(1-x)}{(2-x^2)(2-2x+x^2)} = \frac{4-2x}{2-2x+x^2}-\frac{2x}{2-x^2} .\ (Do NOT prove this.)$$ Use this result to evaluate $$\int_0^1 \frac{8(1-x)}{(2-x^2)(2-2x+x^2)} \, dx.$$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2008 - Paper 1

Step 1

Find $$\int \frac{x^2}{(5+x^2)^2} \, dx.$$

96%

114 rated

Answer

To solve the integral, we use the substitution ( u = 5 + x^2 ) which gives ( du = 2x , dx ) or ( dx = \frac{du}{2x} ). Replacing ( x^2 = u - 5 ):

x2(5+x2)2dx=u5u2du2u5=12(1u)+C=12(5+x2)+C\int \frac{x^2}{(5+x^2)^2} \, dx = \int \frac{u-5}{u^2} \cdot \frac{du}{2 \sqrt{u-5}} = \frac{1}{2} \left( -\frac{1}{u} \right) + C = -\frac{1}{2(5+x^2)} + C.

Step 2

Find $$\int \frac{dx}{\sqrt{4x^2+1}}.$$

99%

104 rated

Answer

Using the substitution ( x = \frac{1}{2} \tan(\theta) ), we get ( dx = \frac{1}{2} \sec^2(\theta) , d\theta ). Then:

$$\int \frac{dx}{\sqrt{4x^2+1}} = \int \frac{\frac{1}{2} \sec^2(\theta)}{\sqrt{1+\tan^2(\theta)}} , d\theta = \int \sec(\theta) , d\theta = \ln |\sec(\theta) + \tan(\theta)| + C = \ln |\sqrt{4x^2 + 1} + 2x| + C.$

Step 3

Evaluate $$\int_0^1 \tan^{-1}(x) \, dx.$$

96%

101 rated

Answer

We can use integration by parts, letting ( u = \tan^{-1}(x) ) and ( dv = dx ). Then, ( du = \frac{1}{1+x^2} , dx ) and ( v = x ). Thus:

01tan1(x)dx=[xtan1(x)]0101x1+x2dx=π4[12ln(1+x2)]01=π412ln(2).\int_0^1 \tan^{-1}(x) \, dx = \left[ x \tan^{-1}(x) \right]_0^1 - \int_0^1 \frac{x}{1+x^2} \, dx = \frac{\pi}{4} - \left[ \frac{1}{2} \ln(1+x^2) \right]_0^1 = \frac{\pi}{4} - \frac{1}{2}\ln(2).

Step 4

Evaluate $$\int_2^2 \frac{dx}{\sqrt{2x-1}}.$$

98%

120 rated

Answer

Here, the integral simplifies as the limits of integration are equal. Therefore,

22dx2x1=0.\int_2^2 \frac{dx}{\sqrt{2x-1}} = 0.

Step 5

Use this result to evaluate $$\int_0^1 \frac{8(1-x)}{(2-x^2)(2-2x+x^2)} \, dx.$$

97%

117 rated

Answer

Using the identity provided:

018(1x)(2x2)(22x+x2)dx=01(42x22x+x22x2x2)dx.\int_0^1 \frac{8(1-x)}{(2-x^2)(2-2x+x^2)} \, dx = \int_0^1 \left( \frac{4-2x}{2-2x+x^2} - \frac{2x}{2-x^2} \right) \, dx.

We can then integrate each part separately, which would involve resolving each rational function using partial fractions.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;