Find
$$\int \frac{x^2}{(5+x^2)^2} \, dx.$$
Find
$$\int \frac{dx}{\sqrt{4x^2+1}}.$$
Evaluate
$$\int_0^1 \tan^{-1}(x) \, dx.$$
Evaluate
$$\int_2^2 \frac{dx}{\sqrt{2x-1}}.$$
It can be shown that
$$\frac{8(1-x)}{(2-x^2)(2-2x+x^2)} = \frac{4-2x}{2-2x+x^2}-\frac{2x}{2-x^2} .\ (Do NOT prove this.)$$
Use this result to evaluate
$$\int_0^1 \frac{8(1-x)}{(2-x^2)(2-2x+x^2)} \, dx.$$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2008 - Paper 1
Question 1
Find
$$\int \frac{x^2}{(5+x^2)^2} \, dx.$$
Find
$$\int \frac{dx}{\sqrt{4x^2+1}}.$$
Evaluate
$$\int_0^1 \tan^{-1}(x) \, dx.$$
Evaluate
$$\int_2^2 \frac{dx}{\sqr... show full transcript
Worked Solution & Example Answer:Find
$$\int \frac{x^2}{(5+x^2)^2} \, dx.$$
Find
$$\int \frac{dx}{\sqrt{4x^2+1}}.$$
Evaluate
$$\int_0^1 \tan^{-1}(x) \, dx.$$
Evaluate
$$\int_2^2 \frac{dx}{\sqrt{2x-1}}.$$
It can be shown that
$$\frac{8(1-x)}{(2-x^2)(2-2x+x^2)} = \frac{4-2x}{2-2x+x^2}-\frac{2x}{2-x^2} .\ (Do NOT prove this.)$$
Use this result to evaluate
$$\int_0^1 \frac{8(1-x)}{(2-x^2)(2-2x+x^2)} \, dx.$$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2008 - Paper 1
Step 1
Find $$\int \frac{x^2}{(5+x^2)^2} \, dx.$$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve the integral, we use the substitution ( u = 5 + x^2 ) which gives ( du = 2x , dx ) or ( dx = \frac{du}{2x} ). Replacing ( x^2 = u - 5 ):