Photo AI

1. Find $$\int \frac{\cos \theta}{\sin^2 \theta} d\theta.$$ (b) (i) Find real numbers $a$ and $b$ such that $$\frac{5x}{x^2 - x - 6} = \frac{a}{x - 3} + \frac{b}{x + 2}.$$ (ii) Hence find $$\int \frac{5x}{x^2 - x - 6} dx.$$ (c) Use integration by parts to evaluate $$\int_1^e x^7 \log_e x dx.$$ d) Using the table of standard integrals, or otherwise, find $$\int \frac{dx}{\sqrt{4x^2 - 1}}.$$ e) Let $t = \tan \frac{\theta}{2}$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2005 - Paper 1

Question icon

Question 1

1.-Find-$$\int-\frac{\cos-\theta}{\sin^2-\theta}-d\theta.$$--(b)-(i)-Find-real-numbers-$a$-and-$b$-such-that-$$\frac{5x}{x^2---x---6}-=-\frac{a}{x---3}-+-\frac{b}{x-+-2}.$$---(ii)-Hence-find-$$\int-\frac{5x}{x^2---x---6}-dx.$$---(c)-Use-integration-by-parts-to-evaluate-$$\int_1^e-x^7-\log_e-x-dx.$$---d)-Using-the-table-of-standard-integrals,-or-otherwise,-find-$$\int-\frac{dx}{\sqrt{4x^2---1}}.$$---e)-Let-$t-=-\tan-\frac{\theta}{2}$-HSC-SSCE Mathematics Extension 2-Question 1-2005-Paper 1.png

1. Find $$\int \frac{\cos \theta}{\sin^2 \theta} d\theta.$$ (b) (i) Find real numbers $a$ and $b$ such that $$\frac{5x}{x^2 - x - 6} = \frac{a}{x - 3} + \frac{b}{x ... show full transcript

Worked Solution & Example Answer:1. Find $$\int \frac{\cos \theta}{\sin^2 \theta} d\theta.$$ (b) (i) Find real numbers $a$ and $b$ such that $$\frac{5x}{x^2 - x - 6} = \frac{a}{x - 3} + \frac{b}{x + 2}.$$ (ii) Hence find $$\int \frac{5x}{x^2 - x - 6} dx.$$ (c) Use integration by parts to evaluate $$\int_1^e x^7 \log_e x dx.$$ d) Using the table of standard integrals, or otherwise, find $$\int \frac{dx}{\sqrt{4x^2 - 1}}.$$ e) Let $t = \tan \frac{\theta}{2}$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2005 - Paper 1

Step 1

Find $\, \int \frac{\cos \theta}{\sin^2 \theta} d\theta$

96%

114 rated

Answer

To find the integral, we can use the substitution method. Let:
u=sinθ.u = \sin \theta.
Then, du=cosθdθ.du = \cos \theta d\theta.
Substituting gives:
cosθsin2θdθ=1u2du=1u+C=1sinθ+C.\int \frac{\cos \theta}{\sin^2 \theta} d\theta = \int \frac{1}{u^2} du = -\frac{1}{u} + C = -\frac{1}{\sin \theta} + C.

Step 2

Find real numbers $a$ and $b$ such that $\frac{5x}{x^2 - x - 6} = \frac{a}{x - 3} + \frac{b}{x + 2}$

99%

104 rated

Answer

To find aa and bb, we can equate coefficients.
Thus:
5x(x3)(x+2)=a(x+2)+b(x3)(x3)(x+2).\frac{5x}{(x - 3)(x + 2)} = \frac{a(x + 2) + b(x - 3)}{(x - 3)(x + 2)}.
This leads to:
5x=a(x+2)+b(x3).5x = a(x + 2) + b(x - 3).
Expanding the right side gives:
5x=(a+b)x+(2a3b).5x = (a + b)x + (2a - 3b).
Setting coefficients equal gives two equations, a+b=5a + b = 5 and 2a3b=02a - 3b = 0. Solving these we find a=2a = 2 and b=3b = 3.

Step 3

Hence find $\int \frac{5x}{x^2 - x - 6}dx$

96%

101 rated

Answer

Using the previously found values of aa and bb, we rewrite our integral:
(2x3+3x+2)dx=2lnx3+3lnx+2+C.\int \left( \frac{2}{x - 3} + \frac{3}{x + 2} \right) dx = 2 \ln |x - 3| + 3 \ln |x + 2| + C.

Step 4

Use integration by parts to evaluate $\int_1^e x^7 \log_e x dx$

98%

120 rated

Answer

Using integration by parts, let u=logexu = \log_e x and dv=x7dxdv = x^7 dx.
Then, du=1xdxdu = \frac{1}{x} dx and v=x88v = \frac{x^8}{8}.
Using the formula udv=uvvdu\int u \, dv = uv - \int v \, du, we have:
1ex7logexdx=[x88logex]1e1ex881xdx.\int_1^e x^7 \log_e x dx = \left[ \frac{x^8}{8} \log_e x \right]_1^e - \int_1^e \frac{x^8}{8} \cdot \frac{1}{x} dx.
Evaluating these gives the result, simplifying gives:
=ee88181ex7dx.= e\cdot \frac{e^8}{8} - \frac{1}{8} \int_1^e x^7 dx.
The remaining integral can be computed separately, leading to the final evaluation.

Step 5

Using the table of standard integrals, or otherwise, find $\int \frac{dx}{\sqrt{4x^2 - 1}}$

97%

117 rated

Answer

Recognizing this as a standard integral, we can rewrite it as:
dx4x21=12ln2x+4x21+C.\int \frac{dx}{\sqrt{4x^2 - 1}} = \frac{1}{2} \ln \left| 2x + \sqrt{4x^2 - 1} \right| + C.

Step 6

Show that $\frac{dt}{d\theta} = \frac{1}{2} (1 + t^2)$

97%

121 rated

Answer

Starting with the given substitution t=tanθ2t = \tan \frac{\theta}{2}:
Using the derivative of tan\tan, we apply the chain rule:
dtdθ=12sec2θ2=12(1+tan2θ2)=12(1+t2).\frac{dt}{d\theta} = \frac{1}{2} \sec^2 \frac{\theta}{2} = \frac{1}{2} \left( 1 + \tan^2 \frac{\theta}{2} \right) = \frac{1}{2} (1 + t^2).

Step 7

Show that $\sin \theta = \frac{2t}{1 + t^2}$

96%

114 rated

Answer

Using the half-angle identities, we can derive this as follows:
sinθ=2tanθ21+tan2θ2=2t1+t2.\sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}} = \frac{2t}{1 + t^2}.

Step 8

Use the substitution $t = \tan \frac{\theta}{2}$ to find $\int \csc \theta d\theta$

99%

104 rated

Answer

Substituting the expression for sinθ\sin \theta gives us:
cscθdθ=1sinθdθ=1+t22tdθ.\int \csc \theta d\theta = \int \frac{1}{\sin \theta} d\theta = \int \frac{1 + t^2}{2t} d\theta.
This will require converting in terms of tt, leading to the final integral evaluation.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;