Photo AI

The base of a solid is the region enclosed by the parabola $x = 1 - y^2$ and the $y$-axis - HSC - SSCE Mathematics Extension 2 - Question 12 - 2018 - Paper 1

Question icon

Question 12

The-base-of-a-solid-is-the-region-enclosed-by-the-parabola-$x-=-1---y^2$-and-the-$y$-axis-HSC-SSCE Mathematics Extension 2-Question 12-2018-Paper 1.png

The base of a solid is the region enclosed by the parabola $x = 1 - y^2$ and the $y$-axis. Each cross-section perpendicular to the $y$-axis is an equilateral triangl... show full transcript

Worked Solution & Example Answer:The base of a solid is the region enclosed by the parabola $x = 1 - y^2$ and the $y$-axis - HSC - SSCE Mathematics Extension 2 - Question 12 - 2018 - Paper 1

Step 1

Find the volume of the solid.

96%

114 rated

Answer

To find the volume of the solid, we start by determining the area of the equivalent equilateral triangle cross-section. Given that the base of the triangle at a height yy is the distance from the yy-axis to the parabola, we have:

x=1y2x = 1 - y^2

Thus, the base of the triangle can be expressed as: b=1y2b = 1 - y^2

Using the properties of equilateral triangles, the height hh can be calculated as: h=32b=32(1y2)h = \frac{\sqrt{3}}{2} b = \frac{\sqrt{3}}{2} (1 - y^2)

The area AA of the cross-section is given by: A=12bh=12(1y2)(32(1y2))=34(1y2)2A = \frac{1}{2} b h = \frac{1}{2} (1 - y^2) \left( \frac{\sqrt{3}}{2} (1 - y^2) \right) = \frac{\sqrt{3}}{4} (1 - y^2)^2

Now, we compute the volume by integrating the area with respect to yy from 1-1 to 11:

V=11Ady=1134(1y2)2dyV = \int_{-1}^{1} A \, dy = \int_{-1}^{1} \frac{\sqrt{3}}{4} (1 - y^2)^2 \, dy

This gives us:

  1. Expand (1y2)2(1 - y^2)^2: (1y2)2=12y2+y4(1 - y^2)^2 = 1 - 2y^2 + y^4

  2. Therefore: V=3411(12y2+y4)dyV = \frac{\sqrt{3}}{4} \int_{-1}^{1} (1 - 2y^2 + y^4) \, dy

  3. Evaluate the integral: V=34[y2y33+y55]11=34(20)=32V = \frac{\sqrt{3}}{4} \left[ y - \frac{2y^3}{3} + \frac{y^5}{5} \right]_{-1}^{1} = \frac{\sqrt{3}}{4} \left( 2 - 0 \right) = \frac{\sqrt{3}}{2}

Step 2

Use implicit differentiation to show that \( \frac{dy}{dx} = \frac{-2x + y}{x + 2y} \).

99%

104 rated

Answer

Differentiating both sides of the equation x2+xy+y2=3x^2 + xy + y^2 = 3 with respect to xx gives:

  1. Differentiate x2x^2: ddx(x2)=2x\frac{d}{dx}(x^2) = 2x

  2. Differentiate xyxy using the product rule: ddx(xy)=y+xdydx\frac{d}{dx}(xy) = y + x\frac{dy}{dx}

  3. Differentiate y2y^2: ddx(y2)=2ydydx\frac{d}{dx}(y^2) = 2y\frac{dy}{dx}

Putting this together, we have: 2x+y+xdydx+2ydydx=02x + y + x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0

Rearranging terms, we find: xdydx+2ydydx=2xyx\frac{dy}{dx} + 2y\frac{dy}{dx} = -2x - y

Factoring out (\frac{dy}{dx}): dydx(x+2y)=2xy\frac{dy}{dx}(x + 2y) = -2x - y

Thus: dydx=2xyx+2y\frac{dy}{dx} = \frac{-2x - y}{x + 2y}

Step 3

Hence, or otherwise, find the coordinates of the points on the curve where \( \frac{dy}{dx} = 0 \).

96%

101 rated

Answer

From the expression we derived for ( \frac{dy}{dx} ), setting it equal to zero gives: 2xy=0-2x - y = 0

This implies: y=2xy = -2x

Now, substituting this into the original curve equation x2+xy+y2=3x^2 + xy + y^2 = 3:

  1. Substitute y=2xy = -2x: x2+x(2x)+(2x)2=3x^2 + x(-2x) + (-2x)^2 = 3 Simplifying yields: x22x2+4x2=3    3x2=3x^2 - 2x^2 + 4x^2 = 3\implies 3x^2 = 3 Thus, ( x^2 = 1 ) leading to: x=1 or x=1x = 1 \text{ or } x = -1

  2. Calculate yy for both xx values:

    • If x=1x = 1, then ( y = -2(1) = -2 ).
    • If x=1x = -1, then ( y = -2(-1) = 2 ).

Thus, the coordinates where ( \frac{dy}{dx} = 0 ) are (1, -2) and (-1, 2).

Step 4

Find \( \int \frac{x^2 + 2x}{x^2 + 2x + 5} dx \).

98%

120 rated

Answer

To evaluate the integral, first simplify the integrand:

x2+2xx2+2x+5dx=(x2+2x+5)5x2+2x+5dx=(15x2+2x+5)dx\int \frac{x^2 + 2x}{x^2 + 2x + 5} \, dx = \int \frac{(x^2 + 2x + 5) - 5}{x^2 + 2x + 5} \, dx = \int \left( 1 - \frac{5}{x^2 + 2x + 5} \right) \, dx

This results in: 1dx51x2+2x+5dx\int 1 \, dx - 5 \int \frac{1}{x^2 + 2x + 5} \, dx

The first integral is straightforward: xx

Now for the second integral, complete the square in the denominator: x2+2x+5=(x+1)2+4x^2 + 2x + 5 = (x + 1)^2 + 4

Thus, 51(x+1)2+4dx=52tan1(x+12)+C5 \int \frac{1}{(x + 1)^2 + 4} \, dx = \frac{5}{2} \tan^{-1}\left( \frac{x + 1}{2} \right) + C

Combining results, we have: x2+2xx2+2x+5dx=x52tan1(x+12)+C\int \frac{x^2 + 2x}{x^2 + 2x + 5} \, dx = x - \frac{5}{2} \tan^{-1}\left( \frac{x + 1}{2} \right) + C

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;