Photo AI

Let $ z = 1 + 2i $ and $ w = 1 + i $ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2002 - Paper 1

Question icon

Question 2

Let-$-z-=-1-+-2i-$-and-$-w-=-1-+-i-$-HSC-SSCE Mathematics Extension 2-Question 2-2002-Paper 1.png

Let $ z = 1 + 2i $ and $ w = 1 + i $. Find, in the form $ x + iy $, (i) $ zw $ (ii) $ \frac{1}{w} $ (b) On an Argand diagram, shade in the region where the in... show full transcript

Worked Solution & Example Answer:Let $ z = 1 + 2i $ and $ w = 1 + i $ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2002 - Paper 1

Step 1

(i) $ zw $

96%

114 rated

Answer

To find zwzw, we multiply the complex numbers:

zw=(1+2i)(1+i)=11+1i+2i1+2ii=1+i+2i2=1+3i.zw = (1 + 2i)(1 + i) = 1 \cdot 1 + 1 \cdot i + 2i \cdot 1 + 2i \cdot i = 1 + i + 2i - 2 = -1 + 3i.

Thus, the answer is 1+3i-1 + 3i.

Step 2

(ii) $ \frac{1}{w} $

99%

104 rated

Answer

To find the reciprocal of a complex number, we use the formula:

1w=11+i=1i(1+i)(1i)=1i1+1=1i2=1212i.\frac{1}{w} = \frac{1}{1 + i} = \frac{1 - i}{(1 + i)(1 - i)} = \frac{1 - i}{1 + 1} = \frac{1 - i}{2} = \frac{1}{2} - \frac{1}{2} i.

Thus, the answer is 1212i\frac{1}{2} - \frac{1}{2} i.

Step 3

(b) Shade the region

96%

101 rated

Answer

To shade the region on the Argand diagram:

  1. First inequality: The condition 0Rez20 \leq Re z \leq 2 indicates that we should shade the area between the vertical lines x=0x = 0 and x=2x = 2.

  2. Second inequality: The condition z1+i2|z - 1 + i| \leq 2 describes a circle centered at (1,1)(1, 1) with a radius of 22. We shade the area inside this circle.

Thus, the valid region is the overlapping area of these two shaded parts.

Step 4

(i) State why $ 2 - i $ is a root of $ P(z) $

98%

120 rated

Answer

Since the coefficients of the polynomial P(z)P(z) must be real, and given that 2+i2 + i is a root, it follows that its conjugate 2i2 - i must also be a root.

Step 5

(ii) Factorise $ P(z) $ over the real numbers

97%

117 rated

Answer

Given that P(z)P(z) has roots 2+i2 + i and 2i2 - i, we can express P(z)P(z) as:

P(z)=(z(2+i))(z(2i))(zr),P(z) = (z - (2 + i))(z - (2 - i))(z - r),

where rr is the third root. Expanding the factors:

(z2)2+1=z24z+5.(z - 2)^2 + 1 = z^2 - 4z + 5.

Thus:

P(z)=(z24z+5)(zr).P(z) = (z^2 - 4z + 5)(z - r).

Step 6

(d) Prove by induction

97%

121 rated

Answer

Let P(n)P(n) be the statement (cosθisinθ)n=cos(nθ)isin(nθ).(cos \theta - i sin \theta)^n = cos(n \theta) - i sin(n \theta).

Base case (n=1n = 1):

(cosθisinθ)1=cosθisinθ,extwhichholds.(cos \theta - i sin \theta)^1 = cos \theta - i sin \theta, ext{ which holds.}

Inductive step: Assume true for n=kn = k:

(cosθisinθ)k=cos(kθ)isin(kθ).(cos \theta - i sin \theta)^k = cos(k \theta) - i sin(k \theta).

Then for n=k+1n = k + 1:

(cosθisinθ)k+1=(cosθisinθ)(cos(kθ)isin(kθ)).(cos \theta - i sin \theta)^{k + 1} = (cos \theta - i sin \theta)(cos(k \theta) - i sin(k \theta)).

Using product-to-sum identities, we can show:

=cos((k+1)θ)isin((k+1)θ).= cos((k+1)\theta) - i sin((k+1)\theta).

Thus the formula holds for n=k+1n = k+1.

Step 7

(i) Find $ \frac{1}{z} $

96%

114 rated

Answer

Given z=2(cosθ+isinθ)z = 2(cos \theta + i sin \theta), we find:

1z=12(cosθ+isinθ)=12cosθisinθcos2θ+sin2θ=12(cosθisinθ).\frac{1}{z} = \frac{1}{2(cos \theta + i sin \theta)} = \frac{1}{2} \cdot \frac{cos \theta - i sin \theta}{cos^2 \theta + sin^2 \theta} = \frac{1}{2}(cos \theta - i sin \theta).

Therefore, the simplified result is:

1z=12(cosθisinθ).\frac{1}{z} = \frac{1}{2} (cos \theta - i sin \theta).

Step 8

(ii) Show the real part of $ \frac{1}{1 - z} $

99%

104 rated

Answer

To find the real part, we compute:

11z=112(cosθ+isinθ)=112cosθ2isinθ.\frac{1}{1 - z} = \frac{1}{1 - 2(cos \theta + i sin \theta)} = \frac{1}{1 - 2cos \theta - 2i sin \theta}.

Multiplying by the conjugate, we get:

=12cosθ+2isinθ(12cosθ)2+(2sinθ)2=12cosθ54cosθ.= \frac{1 - 2cos \theta + 2i sin \theta}{(1 - 2cos \theta)^2 + (2sin \theta)^2} = \frac{1 - 2cos \theta}{5 - 4cos \theta}.

Step 9

(iii) Express the imaginary part of $ \frac{1}{1 - z} $

96%

101 rated

Answer

From the previous calculation:

The imaginary part can be extracted as:

2sinθ(12cosθ)2+(2sinθ)2=2sinθ54cosθ.\frac{2sin \theta}{(1 - 2cos \theta)^2 + (2sin \theta)^2} = \frac{2sin \theta}{5 - 4cos \theta}.

Thus, the imaginary part expressed in terms of θ\theta is:

$$\frac{2sin \theta}{5 - 4cos \theta}.$

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;